A hybrid filtering approach for storage optimization in main-memory cloud database
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Afify G.M. | |
dc.contributor.author | El Bastawissy A. | |
dc.contributor.author | Hegazy O.M. | |
dc.contributor.other | Department of Information System | |
dc.contributor.other | Faculty of Computers and Information | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Egypt; Faculty of Computer Science | |
dc.contributor.other | MSA University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:41:45Z | |
dc.date.available | 2020-01-09T20:41:45Z | |
dc.date.issued | 2015 | |
dc.description | Scopus | |
dc.description | MSA Google Scholar | |
dc.description.abstract | Enterprises and cloud service providers face dramatic increase in the amount of data stored in private and public clouds. Thus, data storage costs are growing hastily because they use only one single high-performance storage tier for storing all cloud data. There's considerable potential to reduce cloud costs by classifying data into active (hot) and inactive (cold). In the main-memory databases research, recent works focus on approaches to identify hot/cold data. Most of these approaches track tuple accesses to identify hot/cold tuples. In contrast, we introduce a novel Hybrid Filtering Approach (HFA) that tracks both tuples and columns accesses in main-memory databases. Our objective is to enhance the performance in terms of three dimensions: storage space, query elapsed time and CPU time. In order to validate the effectiveness of our approach, we realized its concrete implementation on Hekaton, a SQL's server memory-optimized engine using the well-known TPC-H benchmark. Experimental results show that the proposed HFA outperforms Hekaton approach in respect of all performance dimensions. In specific, HFA reduces the storage space by average of 44�96%, reduces the query elapsed time by average of 25�93% and reduces the CPU time by average of 31�97% compared to the traditional database approach. � 2015 | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=19700182731&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.eij.2015.06.007 | |
dc.identifier.doi | PubMed ID : | |
dc.identifier.issn | 11108665 | |
dc.identifier.other | https://doi.org/10.1016/j.eij.2015.06.007 | |
dc.identifier.other | PubMed ID : | |
dc.identifier.uri | https://t.ly/pyw0n | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartofseries | Egyptian Informatics Journal | |
dc.relation.ispartofseries | 16 | |
dc.subject | Cloud computing | en_US |
dc.subject | Cloud storage | en_US |
dc.subject | Cold data management | en_US |
dc.subject | Hot/cold data | en_US |
dc.subject | Main-memory database | en_US |
dc.subject | Cloud computing | en_US |
dc.subject | Database systems | en_US |
dc.subject | Digital storage | en_US |
dc.subject | Query processing | en_US |
dc.subject | Cloud service providers | en_US |
dc.subject | Cloud storages | en_US |
dc.subject | Database approaches | en_US |
dc.subject | Hot/cold data | en_US |
dc.subject | Main memory database | en_US |
dc.subject | Performance dimensions | en_US |
dc.subject | Storage optimization | en_US |
dc.subject | Tpc-h benchmarks | en_US |
dc.subject | Information management | en_US |
dc.title | A hybrid filtering approach for storage optimization in main-memory cloud database | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Gupta, M., Verma, V., Verma, M., In-memory database systems-a paradigm shift. arXiv preprint arXiv, vol. 6, no. 6; December 2013; Arora, I., Gupta, A., Improving performance of cloud based transactional applications using in-memory data grid (2014) Int J Comput Appl, 107 (13); Boissier, M., Optimizing main memory utilization of columnar in-memory databases using data eviction VLDB PhD Workshop; 2014; Mark, P., Buffington J, Keane M. Cloud storage: the next Frontier for tape. White paper of Enterprise Strategy Group, April 2013; Song, Y., Storing big data�the rise of the storage cloud Advanced Micro Devices, Inc., AMD; December 2012; Lahiri, T., Neimat, M., Folkman, S., Oracle times ten: an in-memory database for enterprise applications (2013) IEEE Data Eng Bull, 36 (2), pp. 6-13; Lindstroem, J., Raatikka, V., Ruuth, J., Soini, P., Vakkila, K., IBM solidDB: in-memory database optimized for extreme speed and availability (2013) IEEE Data Eng Bull, 36 (2), pp. 14-20; Stonebraker, M., Weisberg, A., The VoltDB main memory DBMS (2013) IEEE Data Eng Bull, 36 (2), pp. 21-27; Grund, M., Kruger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., Madden, S., HYRISE � a main memory hybrid storage engine (2012) Proc VLDB Endow, 4 (2), pp. 105-116; Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S., H-Store: a high-performance, distributed main memory transaction processing system (2008) Proc VLDB Endow, 1 (2), pp. 1496-1499; Kemper, A., Neumann, T., (2011), pp. 195-206. , HyPer: A hybrid OLTP&OLAP main memory database system based on virtual memory snapshots. 27th International Conference on Data Engineering (ICDE), IEEE;; Boncz, P., Zukowski, M., Nes, N., MonetDB/X100: hyper-pipelining query execution (2005) CIDR, 5, pp. 225-237; F�rber, F., Cha, S.K., Primsch, J., Bornh�vd, C., Sigg, S., Lehner, W., SAP HANA database � data management for modern business applications (2011) ACM Sigmod Record, 40 (4), pp. 45-51; Archer, S., Data-aging strategies for SAP NetWeaver BW focusing on BW's new NLS offering for Sybase IQ. SAP BW Product Management; 2013; Colgan, M., Kamp, J., Lee, S., Oracle database in-memory Oracle White Paper; 2014; Funke, F., Kemper, A., Neumann, T., Compacting transactional data in Hybrid OLTP & OLAP databases (2012) Proc VLDB Endow, 5 (11), pp. 1424-1435; Stoica, R., Ailamaki, A., Enabling efficient OS paging for main-memory OLTP databases. In: Proceedings of the ninth international workshop on data management on new hardware, ACM; 2013; DeBrabant, J., Pavlo, A., Tu, S., Stonebraker, M., Zdonik, S., Anti-caching: a new approach to database management system architecture (2013) Proc VLDB Endow, 6 (14), pp. 1942-1953; Diaconu, C., Freedman, C., Ismert, E., Larson, P.-A., Mittal, P., Stonecipher, R., (2013), pp. 1243-1254. , Hekaton: SQL server's memory-optimized OLTP engine. In: Proceedings of the international conference on management of data, SIGMOD, ACM;; Delaney, K., SQL server in-memory OLTP internals overview for CTP2. SQL Server Technical Article; 2013; Weiner, M., Levin, A., In-memory OLTP � common workload patterns and migration considerations. SQL Server Technical Article; 2014; http://www.tpc.org/tpch/, TPC BENCHMARK� H Standard Specification Revision 2.17.1. Transaction processing performance council; 2014. Information available at <> | |
dcterms.source | Scopus |