Spatial-spectral based hyperspectral image clustering - An adaptive approach using cluster's bands box-plots

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorAl Moghalis M.A.
dc.contributor.authorHegazy O.M.
dc.contributor.authorImam I.F.
dc.contributor.authorEl-Bastawessy A.H.
dc.contributor.otherDepartment of Information Systems
dc.contributor.otherCollege of Computer and Information Systems
dc.contributor.otherAlyamamah University
dc.contributor.otherSaudi Arabia; Department of Information Systems
dc.contributor.otherFaculty of Computers and Information
dc.contributor.otherCairo University
dc.contributor.otherEgypt; Department of Computer Science
dc.contributor.otherCollege of Computing and Information Technology
dc.contributor.otherArab Academy for Science
dc.contributor.otherTechnology and Maritime Transport
dc.contributor.otherEgypt; Department of Information Systems
dc.contributor.otherFaculty of Computer Science
dc.contributor.otherMSA University
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:42:16Z
dc.date.available2020-01-09T20:42:16Z
dc.date.issued2014
dc.descriptionScopus
dc.description.abstractRemote sensing Hyperspectral Image (HSI) has attracted researchers as a rich source of information. A recent trend in HSI analysis directs research to combine features of spatial nature with spectral nature. The motivation was that contiguous pixels share spectral features due to the low spatial resolution. This paper introduces an incremental work to a proposed approach that clusters HSI using K-means and combines spatial and spectral features together. The proposed approach uses selects pixels neighborhood, named kernel, from HSI to represent a cluster. For each cluster, pixels' bands box-plots profile is built to represent cluster bands distribution. Hence, the profile interprets the spectral features of a cluster. The approach starts by selecting K kernels from the given image scene randomly. However, results are affected by this random selection. In this paper, kernels are selected randomly but, they will be subjected to a test that avoids negative effect of randomness and prevents clusters to be represented again. In other words, the test ensures that successive kernels are different than previous selected kernels. Successive kernels are mapped against previous kernels box-plots profiles. Only kernels that prove to be spectrally different are used to represent consecutive clusters centroids. A pixel will join the cluster which score the minimum number of outlier reflectance values. Copyright � 2014 IADIS Press All rights reserved.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100390386&tip=sid&clean=0
dc.identifier.isbn9.79E+12
dc.identifier.urihttps://t.ly/6x2eB
dc.language.isoEnglishen_US
dc.publisherIADISen_US
dc.relation.ispartofseriesProceedings of the International Conferences on Interfaces and Human Computer Interaction 2014, Game and Entertainment Technologies 2014 and Computer Graphics, Visualization, Computer Vision and Image Processing 2014 - Part of the Multi Conference on Computer Science and Information Systems, MCCSIS 2014
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectUniversity for Modern Sciences and Arts
dc.subjectMSA University
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectClusteringen_US
dc.subjectHyperspectral imagesen_US
dc.subjectImage processingen_US
dc.subjectK-meansen_US
dc.subjectRemote sensingen_US
dc.subjectComputer gamesen_US
dc.subjectComputer graphicsen_US
dc.subjectComputer visionen_US
dc.subjectHuman computer interactionen_US
dc.subjectIndependent component analysisen_US
dc.subjectPixelsen_US
dc.subjectReflectionen_US
dc.subjectRemote sensingen_US
dc.subjectSpectroscopyen_US
dc.subjectAdaptive approachen_US
dc.subjectClusteringen_US
dc.subjectHyper-spectral imagesen_US
dc.subjectK-meansen_US
dc.subjectRandom selectionen_US
dc.subjectReflectance valuesen_US
dc.subjectSpatial resolutionen_US
dc.subjectSpectral featureen_US
dc.subjectImage processingen_US
dc.titleSpatial-spectral based hyperspectral image clustering - An adaptive approach using cluster's bands box-plotsen_US
dc.typeConference Paperen_US
dcterms.isReferencedByMoghalis, M.A.A., Hegazy, O.M., Imam, I.F., El-Bastawessy, A.H., Spatial-spectral hyperspectral image clustering using kernel's bands box-plots (2014) 8th European Conference on Data Mining, , accepted; Li, J., Bioucas-Dias, M., Plaza, A., Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning (2013) IEEE Transactions on Geoscience and Remote Sensing, 51 (2), pp. 844-856; Fauvela, M., Chanussotb, J., Benediktssonc, J.A., A spatial-spectral kernel based approach for the classification of remote sensing images (2012) Journal of Pattern Recognition, 45, pp. 381-392; Canham, K., Schlamm, A., Basener, B., Messinger, D., High spatial resolution hyperspectral spatially adaptive endmember selection and spectral unmixing (2011) Proceedings of SPIE 8048, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVII, , 80481O; Magnussen, S., Boudewyn, P., Wulder, M., Contextual classification of landsat TM images to forest inventory cover types (2004) International Journal of Remote Sensing, 25 (12), pp. 2421-2440; Eches, O., Dobigeon, N., Tourneret, J., Enhancing hyperspectral image unmixing with spatial correlations (2011) IEEE Transactions on Geoscience & Remote Sensing, 49, pp. 4239-4247; Ghamisi, P., Benediktsson, J., Cavallaro, G., Plaza, A., Automatic framework for spectral-spatial classification based on supervised feature extraction and morphological attribute profiles (2014) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing; Khodadadzadeh, M., Li, J., Plaza, A., Ghassemian, H., Bioucas-Dias, M., Li, X., Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization (2014) IEEE Transactions on Geoscience and Remote Sensing; Tarabalka, Y., Tilton, C., Spectral-spatial classification of hyperspectral images using hierarchical optimization (2011) Proceedings of Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, , Lisbon, Portugal; Tarabalka, Y., Benediktsson, J., Chanussot, J., Spectral spatial classification of hyperspectral imagery based on partitional clustering techniques (2009) IEEE Trans. Geos. and Remote Sensing, 47, pp. 2973-2987; Fei, B., Akbari, Halig, Hyperspectral imaging and spectral-spatial classification for cancer detection (2012) Proceedings of Biomedical Engineering and Informatics (BMEI) 5th International Conference, pp. 62-64. , Chongqing, China; Fauvel, M., Benediktsson, J., Chanussot, J., Sveinsson, J., Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles (2008) Geoscience and Remote Sensing, IEEE Transactions, 46 (11), pp. 3804-3814
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
201406L001.pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format
Description: