Salivary microRNAs in oral cancer

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorZahran F.
dc.contributor.authorGhalwash D.
dc.contributor.authorShaker O.
dc.contributor.authorAl-Johani K.
dc.contributor.authorScully C.
dc.contributor.otherDivision of Oral Medicine
dc.contributor.otherOral Diagnostic Sciences Department
dc.contributor.otherFaculty of Dentistry
dc.contributor.otherKing Abdulaziz University
dc.contributor.otherJeddah
dc.contributor.otherSaudi Arabia; Department of Oral Medicine and Periodontology
dc.contributor.otherFaculty of Oral and Dental Medicine
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Oral Medicine and Periodontology
dc.contributor.otherFaculty of Dentistry
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.other6th October City
dc.contributor.otherEgypt; Department of Medical Biochemistry
dc.contributor.otherFaculty of Medicine
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.otherEgypt; UCL
dc.contributor.otherLondon
dc.contributor.otherUnited Kingdom
dc.date.accessioned2020-01-09T20:42:02Z
dc.date.available2020-01-09T20:42:02Z
dc.date.issued2015
dc.descriptionScopus
dc.description.abstractObjective: This study investigated the use of three salivary microRNAs (miRNA-21, miRNA-184, and miRNA-145) as possible markers for malignant transformation in oral mucosal lesions. Materials and methods: Salivary whole unstimulated samples were collected from a study group of 100 subjects, consisting of 20 clinically healthy controls, 40 patients with oral potentially malignant disorders (PMDs) [20 with dysplastic lesions and 20 without dysplasia], 20 with biopsy-confirmed oral squamous cell carcinoma (OSCC), and 20 with recurrent aphthous stomatitis (RAS) as disease controls. Total RNA was isolated and purified from saliva samples using the microRNA Isolation Kit (Qiagen, UL). miRNA expression analysis was performed using qRT-PCR (Applied Biosystems). Results: There was a highly significant increase in salivary miRNA-21 and miRNA-184 in OSCC and PMD (with and without dysplasia) when compared to healthy and disease controls (P�<�0.001). Conversely, miRNA-145 levels showed a highly significant decrease in OSCC and PMD overall (P�<�0.001). RAS cases showed no significant difference from normal controls in any measured miRNA (P�>�0.05). The only microRNA to discriminate between OSCC and PMD with dysplasia was miRNA-184. When receiver operating characteristic curves were designed for the three miRNAs, cutoff points delineating the occurrence of malignant change were a fourfold increase in miRNA-21 with specificity 65% and sensitivity 65%, a 0.6 decrease in miRNA-145, with specificity 70% and sensitivity 60%, and a threefold increase of miRNA-184, with specificity 75% and sensitivity 80%. Calculating the area under the curve revealed that miRNA-184 was the only one among the studied miRNAs that provided good diagnostic value. Conclusion: Salivary determination of the miRNAs tested might furnish a noninvasive, rapid adjunctive aid for revealing malignant transformation in oral mucosal lesions, particularly miRNA-184. � 2015 John Wiley & Sons A/S.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=22815&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1111/odi.12340
dc.identifier.doiPubMed ID : 25784212
dc.identifier.issn1354523X
dc.identifier.otherhttps://doi.org/10.1111/odi.12340
dc.identifier.otherPubMed ID : 25784212
dc.identifier.urihttps://t.ly/q220E
dc.language.isoEnglishen_US
dc.publisherBlackwell Publishing Ltden_US
dc.relation.ispartofseriesOral Diseases
dc.relation.ispartofseries21
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectMicroRNAen_US
dc.subjectMiRNA salivary biomarkersen_US
dc.subjectMiRNA-145en_US
dc.subjectMiRNA-184en_US
dc.subjectMiRNA-21en_US
dc.subjectOral canceren_US
dc.subjectOral malignant transformationen_US
dc.subjectPotentially malignant disordersen_US
dc.subjectmicroRNAen_US
dc.subjectmicroRNA 145en_US
dc.subjectmicroRNA 184en_US
dc.subjectmicroRNA 21en_US
dc.subjectunclassified drugen_US
dc.subjectmicroRNAen_US
dc.subjectMIRN145 microRNA, humanen_US
dc.subjectMIRN184 microRNA, humanen_US
dc.subjectMIRN21 microRNA, humanen_US
dc.subjecttumor markeren_US
dc.subjectadulten_US
dc.subjectageden_US
dc.subjectaphthous stomatitisen_US
dc.subjectArticleen_US
dc.subjectcontrolled studyen_US
dc.subjectdysplasiaen_US
dc.subjectfemaleen_US
dc.subjecthumanen_US
dc.subjectmajor clinical studyen_US
dc.subjectmaleen_US
dc.subjectmalignant transformationen_US
dc.subjectmouth canceren_US
dc.subjectmouth squamous cell carcinomaen_US
dc.subjectoral biopsyen_US
dc.subjectoral mucosal diseaseen_US
dc.subjectpriority journalen_US
dc.subjectprotein expressionen_US
dc.subjectsaliva analysisen_US
dc.subjectsaliva levelen_US
dc.subjectCarcinoma, Squamous Cellen_US
dc.subjectcase control studyen_US
dc.subjectchemistryen_US
dc.subjectgeneticsen_US
dc.subjectmiddle ageden_US
dc.subjectMouth Neoplasmsen_US
dc.subjectpathologyen_US
dc.subjectprecanceren_US
dc.subjectreceiver operating characteristicen_US
dc.subjectsalivaen_US
dc.subjectAdulten_US
dc.subjectAgeden_US
dc.subjectBiomarkers, Tumoren_US
dc.subjectCarcinoma, Squamous Cellen_US
dc.subjectCase-Control Studiesen_US
dc.subjectFemaleen_US
dc.subjectHumansen_US
dc.subjectMaleen_US
dc.subjectMicroRNAsen_US
dc.subjectMiddle Ageden_US
dc.subjectMouth Neoplasmsen_US
dc.subjectPrecancerous Conditionsen_US
dc.subjectROC Curveen_US
dc.subjectSalivaen_US
dc.subjectStomatitis, Aphthousen_US
dc.titleSalivary microRNAs in oral canceren_US
dc.typeArticleen_US
dcterms.isReferencedByAkao, Y., Nakagawa, Y., Naoe, T., MicroRNA-143 and -145 in colon cancer (2007) DNA Cell Biol, 26, pp. 311-320; Andreghetto, F.M., Klingbeil, M.F.G., Soares, R.M., MicroRNAs and cell proliferation in head and neck squamous cell carcinoma (2013) BMC Proc, 7, p. P25; Asangani, I.A., Rasheed, S.A., Nikolova, D.A., MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer (2008) Oncogene, 27, pp. 2128-2136; Calin, G.A., Croce, C.M., MicroRNA signatures in human cancers (2006) Nat Rev Cancer, 6, pp. 857-866; Chen, X., Guo, X., Zhang, H., Role of miR-143 targeting KRAS in colorectal tumorigenesis (2009) Oncogene, 28, pp. 1385-1392; Chen, D., Cabay, R.J., Jin, Y., MicroRNA deregulations in head and neck squamous cell carcinomas (2013) J Oral Maxillofac Res, 4, p. e2. , eCollection 2013; Foley, N.H., Bray, I.M., Tivnan, A., MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2 (2010) Mol Cancer, 9, p. 83; Fu, X., Han, Y., Wu, Y., Prognostic role of microRNA-21 in various carcinomas: a systematic review and meta-analysis (2011) Eur J Clin Invest, 41, pp. 1245-1253; Gale, N., Pilch, B.Z., Sidransky, D., Epithelial precursor lesions (2005) Head and Neck Tumors, pp. 177-179. , In: Barnes L, Eveson JW, Reichart P, Sidransky D, eds. . IARC Press: Lyon; Gonz�lez-Moles, M.A., Ruiz-�vila, I., Gil-Montoya, J.A., Plaza-Campillo, J., Scully, C., ?-Catenin in oral cancer: an update on current knowledge (2014) Oral Oncol, 50, pp. 818-824; Grosshans, H., Slack, F.J., Micro-RNAs: small is plentiful (2002) J Cell Biol, 156, pp. 17-21; Han, L., Yue, X., Zhou, X., MicroRNA-21 expression is regulated by ?-catenin/STAT3 pathway and promotes glioma cell invasion by direct targeting RECK (2012) CNS Neurosci Ther, 18, pp. 573-583; Han, M., Liu, M., Wang, Y., Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN (2012) PLoS One, 7, p. e39520; Hannon, G.J., Rossi, J.J., Unlocking the potential of the human genome with RNA interference (2004) Nature, 431, pp. 371-378; Hedb�ck, N., Jensen, D.H., Specht, L., MiR-21 expression in the tumor stroma of oral squamous cell carcinoma: an independent biomarker of disease free survival (2014) PLoS One, 9, p. e95193; Herr, A.E., Hatch, A.V., Throckmorton, D.J., Microfluidic immunoassays as rapid saliva-based clinical diagnostics (2007) Proc Natl Acad Sci USA, 104, pp. 5268-5273; Hwang, J.H., Voortman, J., Giovannetti, E., Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer (2010) PLoS One, 5, p. e10630; Ichimi, T., Enokida, H., Okuno, Y., Identification of novel microRNA targets based on microRNA signatures in bladder cancer (2009) Int J Cancer, 125, pp. 345-352; Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., Forman, D., Global cancer statistics (2011) CA Cancer J Clin, 61, pp. 69-90; Joshi, R., Durve, U., Squamous cell carcinoma in hypertrophic lichen planus (2007) Indian J Dermatol Venereol Leprol, 73, pp. 54-55; Kai, Y., Peng, W., Ling, W., Jiebing, H., Zhuan, B., Reciprocal effects between microRNA-140-5p and ADAM10 suppress migration and invasion of human tongue cancer cells (2014) Biochem Biophys Res Commun, 448, pp. 308-314; Kawakita, A., Yanamoto, S., Yamada, S.I., MicroRNA-21 promotes oral cancer invasion via the wnt/?-catenin pathway by targeting DKK2 (2013) Pathol Oncol Res, 20, pp. 253-261; Kolokythas, A., Miloro, M., Zhou, X., Review of MicroRNA proposed target genes in oral cancer. Part II (2011) J Oral Maxillofac Res, 2, p. e2; Leemans, C.R., Braakhuis, B.J., Brakenhoff, R.H., The molecular biology of head and neck cancer (2011) Nat Rev Cancer, 11, pp. 9-22; Liu, Z., Wei, S., Ma, H., A functional variant at the miR-184 binding site in TNFAIP2 and risk of squamous cell carcinoma of the head and neck (2011) Carcinogenesis, 32, pp. 1668-1674; Liu, Z.L., Wang, H., Liu, J., Wang, Z.X., MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN (2013) Mol Cell Biochem, 372, pp. 35-45; Mehdi, T., Bashardoost, N., Ahmadi, M., Kernel smoothing for ROC curve and estimation for thyroid stimulating hormone (2011) Int J Public Health Res, pp. 239-242; Mishra, M., Mohanty, J., Sengupta, S., Tripathy, S., Epidemiological and clinicopathological study of oral leukoplakia (2005) Indian J Dermatol Venereol Leprol, 71, pp. 161-165; Momen-Heravi, F., Trachtenberg, A.J., Kuo, W.P., Cheng, Y.S., Genomewide study of salivary MicroRNAs for detection of oral cancer (2014) J Dent Res, 93 (Suppl), pp. 86S-93S; Navazesh, M., Methods for collecting saliva (1993) Ann N Y Acad Sci, 694, pp. 72-77; Ostenfeld, M.S., Bramsen, J.B., Lamy, P., miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors (2010) Oncogene, 29, pp. 1073-1084; Ozen, M., Creighton, C.J., Ozdemir, M., Ittmann, M., Widespread deregulation of micro-RNA expression in human prostate cancer (2008) Oncogene, 27, pp. 1788-1793; Palmieri, A., Carinci, F., Martinelli, M., Role of the MIR146A polymorphism in the origin and progression of oral squamous cell carcinoma (2014) Eur J Oral Sci, 122, pp. 198-201; Park, N.J., Li, Y., Yu, T., Brinkman, B.M., Wong, D.T., Characterization of RNA in saliva (2006) Clin Chem, 52, pp. 988-994; Park, N.J., Zhou, X., Yu, T., Characterization of salivary RNA by cDNA library analysis (2007) Arch Oral Biol, 52, pp. 30-35; Park, N.J., Zhou, H., Elashoff, D., Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection (2009) Clin Cancer Res, 15, pp. 5473-5477; Raisch, J., Darfeuille-Michaud, A., Nguyen, H.T., Role of microRNAs in the immune system, inflammation and cancer (2013) World J Gastroenterol, 19, pp. 2985-2996; Reis, P.P., Tomenson, M., Cervigne, N.K., Programmed cell death 4 loss increases tumor cell invasion and is regulated by miR-21 in oral squamous cell carcinoma (2010) Mol Cancer, 9, p. 238; Roy, R., De Sarkar, N., Ghose, S., Association between risk of oral precancer and genetic variations in microRNA and related processing genes (2014) J Biomed Sci, 21, p. 48; Sachdeva, M., Mo, Y.Y., MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1 (2010) Cancer Res, 70, pp. 378-387; Sachdeva, M., Zhu, S., Wu, F., p53 represses c-Myc through induction of the tumor suppressor miR-145 (2009) Proc Natl Acad Sci USA, 106, pp. 3207-3212; Scully, C., Challenges in predicting which oral mucosal potentially malignant disease will progress to neoplasia (2014) Oral Dis, 20, pp. 1-5; Severino, P., Oliveira, L.S., Torres, N., High-throughput sequencing of small RNA transcriptomes reveals critical biological features targeted by microRNAs in cell models used for squamous cell cancer research (2013) BMC Genom, 26, p. 735; Shao, Y., Qu, Y., Dang, S., Yao, B., Ji, M., MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6 (2013) Cancer Cell Int, 13, p. 51; Shi, L.J., Zhang, C.Y., Zhou, Z.T., MicroRNA-155 in oral squamous cell carcinoma: overexpression, localization, and prognostic potential (2014) Head Neck; Spielmann, N., Wong, D.T., Invited medical review. Saliva: diagnostics and therapeutic perspectives (2011) Oral Dis, 17, pp. 345-354; Weitzel, R.P., Lesniewski, M.L., Haviernik, P., MicroRNA 184 regulates expression of NFAT1 in umbilical cord blood CD4�+� T cells (2009) Blood, 113, pp. 6648-6657; Wong, T.S., Liu, X.B., Wong, B.Y., Ng, R.W., Yuen, A.P., Wei, W.I., Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue (2008) Clin Cancer Res, 14, pp. 2588-2592; Wu, B.H., Xiong, X.P., Jia, J., Zhang, W.F., MicroRNAs: new actors in the oral cancer scene (2011) Oral Oncol, 47, pp. 314-319; Yan, L.X., Huang, X.F., Shao, Q., MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis (2008) RNA, 14, pp. 2348-2360; Yanamoto, S., Kawasaki, G., Yoshitomi, I., Mizuno, A., p53, mdm2, and p21 expression in oral squamous cell carcinomas: relationship with clinicopathologic factors (2002) Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 94, pp. 593-600; Yang, Y., Li, Y.X., Yang, X., Jiang, L., Zhou, Z.J., Zhu, Y.Q., Progress risk assessment of oral premalignant lesions with saliva miRNA analysis (2013) BMC Cancer, 13, p. 129; Yoshizawa, J.M., Wong, D.T.W., Salivary microRNAs and oral cancer detection. MicroRNA protocols (2013) Methods Mol Biol, 936, pp. 313-324; Yu, J., Ryan, D.G., Getsios, S., Oliveira-Fernandes, M., Fatima, A., Lavker, R.M., MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia (2008) Proc Natl Acad Sci USA, 105, pp. 19300-19305; Yu, T., Wang, X.Y., Gong, R.G., The expression profile of microRNAs in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster (2009) J Exp Clin Cancer Res, 28, p. 64; Zhang, J., Guo, H., Qian, G., MiR-145, a new regulator of the DNA fragmentation factor-45 (DFF45)-mediated apoptotic network (2010) Mol Cancer, 9, p. 211; Zhang, J., Guo, H., Zhang, H., Putative tumor suppressor miR-145 inhibits colon cancer cell growth by targeting oncogene Friend leukemia virus integration 1 gene (2011) Cancer, 117, pp. 86-95; Zhang, B.G., Li, J.F., Yu, B.Q., Zhu, Z.G., Liu, B.Y., Yan, M., MicroRNA-21 promotes tumor proliferation and invasion in�gastric cancer by targeting PTEN (2012) Oncol Rep, 27, pp. 1019-1026; Zhang, J., Sun, Q., Zhang, Z., Ge, S., Han, Z.G., Chen, W.T., Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop (2013) Oncogene, 32, pp. 61-69
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: