Salivary microRNAs in oral cancer
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Zahran F. | |
dc.contributor.author | Ghalwash D. | |
dc.contributor.author | Shaker O. | |
dc.contributor.author | Al-Johani K. | |
dc.contributor.author | Scully C. | |
dc.contributor.other | Division of Oral Medicine | |
dc.contributor.other | Oral Diagnostic Sciences Department | |
dc.contributor.other | Faculty of Dentistry | |
dc.contributor.other | King Abdulaziz University | |
dc.contributor.other | Jeddah | |
dc.contributor.other | Saudi Arabia; Department of Oral Medicine and Periodontology | |
dc.contributor.other | Faculty of Oral and Dental Medicine | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Oral Medicine and Periodontology | |
dc.contributor.other | Faculty of Dentistry | |
dc.contributor.other | October University for Modern Sciences and Arts | |
dc.contributor.other | 6th October City | |
dc.contributor.other | Egypt; Department of Medical Biochemistry | |
dc.contributor.other | Faculty of Medicine | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; UCL | |
dc.contributor.other | London | |
dc.contributor.other | United Kingdom | |
dc.date.accessioned | 2020-01-09T20:42:02Z | |
dc.date.available | 2020-01-09T20:42:02Z | |
dc.date.issued | 2015 | |
dc.description | Scopus | |
dc.description.abstract | Objective: This study investigated the use of three salivary microRNAs (miRNA-21, miRNA-184, and miRNA-145) as possible markers for malignant transformation in oral mucosal lesions. Materials and methods: Salivary whole unstimulated samples were collected from a study group of 100 subjects, consisting of 20 clinically healthy controls, 40 patients with oral potentially malignant disorders (PMDs) [20 with dysplastic lesions and 20 without dysplasia], 20 with biopsy-confirmed oral squamous cell carcinoma (OSCC), and 20 with recurrent aphthous stomatitis (RAS) as disease controls. Total RNA was isolated and purified from saliva samples using the microRNA Isolation Kit (Qiagen, UL). miRNA expression analysis was performed using qRT-PCR (Applied Biosystems). Results: There was a highly significant increase in salivary miRNA-21 and miRNA-184 in OSCC and PMD (with and without dysplasia) when compared to healthy and disease controls (P�<�0.001). Conversely, miRNA-145 levels showed a highly significant decrease in OSCC and PMD overall (P�<�0.001). RAS cases showed no significant difference from normal controls in any measured miRNA (P�>�0.05). The only microRNA to discriminate between OSCC and PMD with dysplasia was miRNA-184. When receiver operating characteristic curves were designed for the three miRNAs, cutoff points delineating the occurrence of malignant change were a fourfold increase in miRNA-21 with specificity 65% and sensitivity 65%, a 0.6 decrease in miRNA-145, with specificity 70% and sensitivity 60%, and a threefold increase of miRNA-184, with specificity 75% and sensitivity 80%. Calculating the area under the curve revealed that miRNA-184 was the only one among the studied miRNAs that provided good diagnostic value. Conclusion: Salivary determination of the miRNAs tested might furnish a noninvasive, rapid adjunctive aid for revealing malignant transformation in oral mucosal lesions, particularly miRNA-184. � 2015 John Wiley & Sons A/S. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=22815&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1111/odi.12340 | |
dc.identifier.doi | PubMed ID : 25784212 | |
dc.identifier.issn | 1354523X | |
dc.identifier.other | https://doi.org/10.1111/odi.12340 | |
dc.identifier.other | PubMed ID : 25784212 | |
dc.identifier.uri | https://t.ly/q220E | |
dc.language.iso | English | en_US |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.relation.ispartofseries | Oral Diseases | |
dc.relation.ispartofseries | 21 | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | University of Modern Sciences and Arts | |
dc.subject | MSA University | |
dc.subject | MicroRNA | en_US |
dc.subject | MiRNA salivary biomarkers | en_US |
dc.subject | MiRNA-145 | en_US |
dc.subject | MiRNA-184 | en_US |
dc.subject | MiRNA-21 | en_US |
dc.subject | Oral cancer | en_US |
dc.subject | Oral malignant transformation | en_US |
dc.subject | Potentially malignant disorders | en_US |
dc.subject | microRNA | en_US |
dc.subject | microRNA 145 | en_US |
dc.subject | microRNA 184 | en_US |
dc.subject | microRNA 21 | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | microRNA | en_US |
dc.subject | MIRN145 microRNA, human | en_US |
dc.subject | MIRN184 microRNA, human | en_US |
dc.subject | MIRN21 microRNA, human | en_US |
dc.subject | tumor marker | en_US |
dc.subject | adult | en_US |
dc.subject | aged | en_US |
dc.subject | aphthous stomatitis | en_US |
dc.subject | Article | en_US |
dc.subject | controlled study | en_US |
dc.subject | dysplasia | en_US |
dc.subject | female | en_US |
dc.subject | human | en_US |
dc.subject | major clinical study | en_US |
dc.subject | male | en_US |
dc.subject | malignant transformation | en_US |
dc.subject | mouth cancer | en_US |
dc.subject | mouth squamous cell carcinoma | en_US |
dc.subject | oral biopsy | en_US |
dc.subject | oral mucosal disease | en_US |
dc.subject | priority journal | en_US |
dc.subject | protein expression | en_US |
dc.subject | saliva analysis | en_US |
dc.subject | saliva level | en_US |
dc.subject | Carcinoma, Squamous Cell | en_US |
dc.subject | case control study | en_US |
dc.subject | chemistry | en_US |
dc.subject | genetics | en_US |
dc.subject | middle aged | en_US |
dc.subject | Mouth Neoplasms | en_US |
dc.subject | pathology | en_US |
dc.subject | precancer | en_US |
dc.subject | receiver operating characteristic | en_US |
dc.subject | saliva | en_US |
dc.subject | Adult | en_US |
dc.subject | Aged | en_US |
dc.subject | Biomarkers, Tumor | en_US |
dc.subject | Carcinoma, Squamous Cell | en_US |
dc.subject | Case-Control Studies | en_US |
dc.subject | Female | en_US |
dc.subject | Humans | en_US |
dc.subject | Male | en_US |
dc.subject | MicroRNAs | en_US |
dc.subject | Middle Aged | en_US |
dc.subject | Mouth Neoplasms | en_US |
dc.subject | Precancerous Conditions | en_US |
dc.subject | ROC Curve | en_US |
dc.subject | Saliva | en_US |
dc.subject | Stomatitis, Aphthous | en_US |
dc.title | Salivary microRNAs in oral cancer | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Akao, Y., Nakagawa, Y., Naoe, T., MicroRNA-143 and -145 in colon cancer (2007) DNA Cell Biol, 26, pp. 311-320; Andreghetto, F.M., Klingbeil, M.F.G., Soares, R.M., MicroRNAs and cell proliferation in head and neck squamous cell carcinoma (2013) BMC Proc, 7, p. P25; Asangani, I.A., Rasheed, S.A., Nikolova, D.A., MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer (2008) Oncogene, 27, pp. 2128-2136; Calin, G.A., Croce, C.M., MicroRNA signatures in human cancers (2006) Nat Rev Cancer, 6, pp. 857-866; Chen, X., Guo, X., Zhang, H., Role of miR-143 targeting KRAS in colorectal tumorigenesis (2009) Oncogene, 28, pp. 1385-1392; Chen, D., Cabay, R.J., Jin, Y., MicroRNA deregulations in head and neck squamous cell carcinomas (2013) J Oral Maxillofac Res, 4, p. e2. , eCollection 2013; Foley, N.H., Bray, I.M., Tivnan, A., MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2 (2010) Mol Cancer, 9, p. 83; Fu, X., Han, Y., Wu, Y., Prognostic role of microRNA-21 in various carcinomas: a systematic review and meta-analysis (2011) Eur J Clin Invest, 41, pp. 1245-1253; Gale, N., Pilch, B.Z., Sidransky, D., Epithelial precursor lesions (2005) Head and Neck Tumors, pp. 177-179. , In: Barnes L, Eveson JW, Reichart P, Sidransky D, eds. . IARC Press: Lyon; Gonz�lez-Moles, M.A., Ruiz-�vila, I., Gil-Montoya, J.A., Plaza-Campillo, J., Scully, C., ?-Catenin in oral cancer: an update on current knowledge (2014) Oral Oncol, 50, pp. 818-824; Grosshans, H., Slack, F.J., Micro-RNAs: small is plentiful (2002) J Cell Biol, 156, pp. 17-21; Han, L., Yue, X., Zhou, X., MicroRNA-21 expression is regulated by ?-catenin/STAT3 pathway and promotes glioma cell invasion by direct targeting RECK (2012) CNS Neurosci Ther, 18, pp. 573-583; Han, M., Liu, M., Wang, Y., Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN (2012) PLoS One, 7, p. e39520; Hannon, G.J., Rossi, J.J., Unlocking the potential of the human genome with RNA interference (2004) Nature, 431, pp. 371-378; Hedb�ck, N., Jensen, D.H., Specht, L., MiR-21 expression in the tumor stroma of oral squamous cell carcinoma: an independent biomarker of disease free survival (2014) PLoS One, 9, p. e95193; Herr, A.E., Hatch, A.V., Throckmorton, D.J., Microfluidic immunoassays as rapid saliva-based clinical diagnostics (2007) Proc Natl Acad Sci USA, 104, pp. 5268-5273; Hwang, J.H., Voortman, J., Giovannetti, E., Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer (2010) PLoS One, 5, p. e10630; Ichimi, T., Enokida, H., Okuno, Y., Identification of novel microRNA targets based on microRNA signatures in bladder cancer (2009) Int J Cancer, 125, pp. 345-352; Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., Forman, D., Global cancer statistics (2011) CA Cancer J Clin, 61, pp. 69-90; Joshi, R., Durve, U., Squamous cell carcinoma in hypertrophic lichen planus (2007) Indian J Dermatol Venereol Leprol, 73, pp. 54-55; Kai, Y., Peng, W., Ling, W., Jiebing, H., Zhuan, B., Reciprocal effects between microRNA-140-5p and ADAM10 suppress migration and invasion of human tongue cancer cells (2014) Biochem Biophys Res Commun, 448, pp. 308-314; Kawakita, A., Yanamoto, S., Yamada, S.I., MicroRNA-21 promotes oral cancer invasion via the wnt/?-catenin pathway by targeting DKK2 (2013) Pathol Oncol Res, 20, pp. 253-261; Kolokythas, A., Miloro, M., Zhou, X., Review of MicroRNA proposed target genes in oral cancer. Part II (2011) J Oral Maxillofac Res, 2, p. e2; Leemans, C.R., Braakhuis, B.J., Brakenhoff, R.H., The molecular biology of head and neck cancer (2011) Nat Rev Cancer, 11, pp. 9-22; Liu, Z., Wei, S., Ma, H., A functional variant at the miR-184 binding site in TNFAIP2 and risk of squamous cell carcinoma of the head and neck (2011) Carcinogenesis, 32, pp. 1668-1674; Liu, Z.L., Wang, H., Liu, J., Wang, Z.X., MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN (2013) Mol Cell Biochem, 372, pp. 35-45; Mehdi, T., Bashardoost, N., Ahmadi, M., Kernel smoothing for ROC curve and estimation for thyroid stimulating hormone (2011) Int J Public Health Res, pp. 239-242; Mishra, M., Mohanty, J., Sengupta, S., Tripathy, S., Epidemiological and clinicopathological study of oral leukoplakia (2005) Indian J Dermatol Venereol Leprol, 71, pp. 161-165; Momen-Heravi, F., Trachtenberg, A.J., Kuo, W.P., Cheng, Y.S., Genomewide study of salivary MicroRNAs for detection of oral cancer (2014) J Dent Res, 93 (Suppl), pp. 86S-93S; Navazesh, M., Methods for collecting saliva (1993) Ann N Y Acad Sci, 694, pp. 72-77; Ostenfeld, M.S., Bramsen, J.B., Lamy, P., miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors (2010) Oncogene, 29, pp. 1073-1084; Ozen, M., Creighton, C.J., Ozdemir, M., Ittmann, M., Widespread deregulation of micro-RNA expression in human prostate cancer (2008) Oncogene, 27, pp. 1788-1793; Palmieri, A., Carinci, F., Martinelli, M., Role of the MIR146A polymorphism in the origin and progression of oral squamous cell carcinoma (2014) Eur J Oral Sci, 122, pp. 198-201; Park, N.J., Li, Y., Yu, T., Brinkman, B.M., Wong, D.T., Characterization of RNA in saliva (2006) Clin Chem, 52, pp. 988-994; Park, N.J., Zhou, X., Yu, T., Characterization of salivary RNA by cDNA library analysis (2007) Arch Oral Biol, 52, pp. 30-35; Park, N.J., Zhou, H., Elashoff, D., Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection (2009) Clin Cancer Res, 15, pp. 5473-5477; Raisch, J., Darfeuille-Michaud, A., Nguyen, H.T., Role of microRNAs in the immune system, inflammation and cancer (2013) World J Gastroenterol, 19, pp. 2985-2996; Reis, P.P., Tomenson, M., Cervigne, N.K., Programmed cell death 4 loss increases tumor cell invasion and is regulated by miR-21 in oral squamous cell carcinoma (2010) Mol Cancer, 9, p. 238; Roy, R., De Sarkar, N., Ghose, S., Association between risk of oral precancer and genetic variations in microRNA and related processing genes (2014) J Biomed Sci, 21, p. 48; Sachdeva, M., Mo, Y.Y., MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1 (2010) Cancer Res, 70, pp. 378-387; Sachdeva, M., Zhu, S., Wu, F., p53 represses c-Myc through induction of the tumor suppressor miR-145 (2009) Proc Natl Acad Sci USA, 106, pp. 3207-3212; Scully, C., Challenges in predicting which oral mucosal potentially malignant disease will progress to neoplasia (2014) Oral Dis, 20, pp. 1-5; Severino, P., Oliveira, L.S., Torres, N., High-throughput sequencing of small RNA transcriptomes reveals critical biological features targeted by microRNAs in cell models used for squamous cell cancer research (2013) BMC Genom, 26, p. 735; Shao, Y., Qu, Y., Dang, S., Yao, B., Ji, M., MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6 (2013) Cancer Cell Int, 13, p. 51; Shi, L.J., Zhang, C.Y., Zhou, Z.T., MicroRNA-155 in oral squamous cell carcinoma: overexpression, localization, and prognostic potential (2014) Head Neck; Spielmann, N., Wong, D.T., Invited medical review. Saliva: diagnostics and therapeutic perspectives (2011) Oral Dis, 17, pp. 345-354; Weitzel, R.P., Lesniewski, M.L., Haviernik, P., MicroRNA 184 regulates expression of NFAT1 in umbilical cord blood CD4�+� T cells (2009) Blood, 113, pp. 6648-6657; Wong, T.S., Liu, X.B., Wong, B.Y., Ng, R.W., Yuen, A.P., Wei, W.I., Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue (2008) Clin Cancer Res, 14, pp. 2588-2592; Wu, B.H., Xiong, X.P., Jia, J., Zhang, W.F., MicroRNAs: new actors in the oral cancer scene (2011) Oral Oncol, 47, pp. 314-319; Yan, L.X., Huang, X.F., Shao, Q., MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis (2008) RNA, 14, pp. 2348-2360; Yanamoto, S., Kawasaki, G., Yoshitomi, I., Mizuno, A., p53, mdm2, and p21 expression in oral squamous cell carcinomas: relationship with clinicopathologic factors (2002) Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 94, pp. 593-600; Yang, Y., Li, Y.X., Yang, X., Jiang, L., Zhou, Z.J., Zhu, Y.Q., Progress risk assessment of oral premalignant lesions with saliva miRNA analysis (2013) BMC Cancer, 13, p. 129; Yoshizawa, J.M., Wong, D.T.W., Salivary microRNAs and oral cancer detection. MicroRNA protocols (2013) Methods Mol Biol, 936, pp. 313-324; Yu, J., Ryan, D.G., Getsios, S., Oliveira-Fernandes, M., Fatima, A., Lavker, R.M., MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia (2008) Proc Natl Acad Sci USA, 105, pp. 19300-19305; Yu, T., Wang, X.Y., Gong, R.G., The expression profile of microRNAs in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster (2009) J Exp Clin Cancer Res, 28, p. 64; Zhang, J., Guo, H., Qian, G., MiR-145, a new regulator of the DNA fragmentation factor-45 (DFF45)-mediated apoptotic network (2010) Mol Cancer, 9, p. 211; Zhang, J., Guo, H., Zhang, H., Putative tumor suppressor miR-145 inhibits colon cancer cell growth by targeting oncogene Friend leukemia virus integration 1 gene (2011) Cancer, 117, pp. 86-95; Zhang, B.G., Li, J.F., Yu, B.Q., Zhu, Z.G., Liu, B.Y., Yan, M., MicroRNA-21 promotes tumor proliferation and invasion in�gastric cancer by targeting PTEN (2012) Oncol Rep, 27, pp. 1019-1026; Zhang, J., Sun, Q., Zhang, Z., Ge, S., Han, Z.G., Chen, W.T., Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop (2013) Oncogene, 32, pp. 61-69 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: