Numerical behavior of a fractional order dynamical model of RNA silencing

Thumbnail Image

Date

2016

Journal Title

Journal ISSN

Volume Title

Type

Article

Publisher

International Journal of Scientific World

Series Info

nternational Journal of Scientific World;4 (2) (2016) 52-56

Scientific Journal Rankings

Abstract

A class of fractional-order differential models of RNA silencing with memory is presented in this paper. We also carry out a detailed analysis on the stability of equilibrium and we show that the model established in this paper possesses non-negative solutions. Numerical solutions are obtained using a predictor-corrector method to handle the fractional derivatives. The fractional derivatives are described in the Caputo sense. Numerical simulations are presented to illustrate the results. Also, the numerical simulations show that, modeling the phenomena of RNA silencing by fractional ordinary differential equations (FODE) has more advantages than classical integer-order modeling.

Description

MSA Google Scholar

Keywords

Fractional Calculus, RNA Silencing Fractional Order Model, Predictor-Corrector Method

Citation

[1] E. Ahmed and A.S. Elgazzar,” On fractional order differential equations model for nonlocal epidemics”, PHYSICA A, 379 (2007) 607–614. http://dx.doi.org/10.1016/j.physa.2007.01.010. [2] E. Ahmed, A.M.A. El-Sayed, H.A.A. El-Saka,” Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models”, J. Math. Anal. Appl. 325 (2007) 542–553, http://dx.doi.org/10.1016/j.jmaa.2006.01.087. [3] F. Aini Abdullah and Ahmad Izani Md. Ismail, Simulations of the Spread of the Hantavirus Using Fractional Differential Equations, Matematika, 27(2011) 149-158. [4] A.A.M. Arafa, S.Z. Rida, M. Khalil,” Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection”, Nonlinear Biomedical Physics 6(2012) 1-7, http://dx.doi.org/10.1186/1753- 4631-6-1. [5] A.A.M. Arafa, S.Z. Rida, M. Khalil,” The effect of anti-viral drug treatment of human immunodeficiency”, Appl. Math. Model, 37 (2013) 2189–2196,http://dx. doi:10.1016/j.apm.2012.05.002 http://dx.doi.org/10.1016/j.apm.2012.05.002. [6] A.A.M. Arafa, S.Z. Rida. M. Khalil,” Solutions of Fractional model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells using HAM”, International Journal of Basic and Applied Sciences, 1 (1) (2012) 1-14. http://dx.doi.org/10.14419/ijbas.v1i1.15. [7] D. Baulcombe, “RNA silencing”, Curr. Biol. 12, (2002) R82–R84, http://dx.doi.org/10.1016/S0960-9822(02)00665-6.. [8] C.T. Bergstrom, E. McKittrick, R. Antia,” Mathematical models of RNA silencing: Unidirectional amplification limits accidental selfdirected reactions”, PNAS, 100 (2003) 11511–11516. http://dx.doi.org/10.1073/pnas.1931639100. [9] M. Dalir, M. Bashour,” Applications of Fractional Calculus”, Appl. Math. Sci. 4 (2010) 1021–1032. [10] E. Demirci, Arzu Unal and Nuri Ozalp,” A fractional order SEIR Model with density dependent death rate”, Hacet. J. Math. Stat., 40 (2) (2011) 287 – 295. [11] W. Deng,” Smoothness and stability of the solutions for nonlinear fractional differential equations”, Nonlinear Anal-Theor. 72 (2010) 1768-1777, http://dx.doi.org/10.1016/j.na.2009.09.018. [12] K. Diethelm,” The Analysis of Fractional Differential Equations”, Springer-Verlag, Berlin, (2010) 181-182. [13] Y. Ding, H. Yea,” A fractional-order differential equation model of HIV infection of CD4+T-cells”, Math. Comput. Model. 50 (2009) 386–392, http://dx.doi.org/10.1186/1753-4631-6-1. [14] A. Eamens, M.B. Wang, N. A. Smith, P. M. Waterhouse,” RNA Silencing in Plants: Yesterday, Today, and Tomorrow”, Plant Physiology,147(2008),456–468, http://dx.doi.org/10.1104/pp.108.117275. [15] A.E.M. El-Misiery, E. Ahmed,” On a fractional model for earthquakes”, Appl. Comput. Math. 178 (2006) 207–211. http://dx.doi.org/10.1016/j.amc.2005.10.011. [16] A.M.A. El-Sayed, I.L. El-Kalla, E.A.A. Ziada,” Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations”, Applied Numerical Mathematics 60 (2010) 788– 797, http://dx.doi.org/10.1016/j.apnum.2010.02.007. [17] A.M.A. El-Sayed, M.E. Nasr,” Existence of uniformly stable solutions of non-autonomous discontinuous dynamical systems”, J.Egyptian Math. Soc. (2011) 19, 91-94. http://dx.doi.org/10.1016/j.joems.2011.09.006. [18] A.M.A. El-Sayed,” On the existence and stability of positive solution for a nonlinear fractional-order differential equation and some applications”, Alex. J. Math. 1 (2010) 1–10. [19] A.M.A. El-Sayed, S.Z. Rida, A.A.M. Arafa,” Exact solutions of some time-fractional biological population models by using generalized differential transform method”, Int. J. Math. Model. Simul. Appl. 3 (2010) 231–239. [20] A.M.A. El-Sayed, S.Z. Rida, A.A.M. Arafa,” On the Solutions of Time-fractional Bacterial Chemotaxis in a Diffusion Gradient Chamber”, Int. J. Nonlinear Sci. Numer., 7(2009) 485–492. [21] A.M.A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka,” Numerical solution for multi-term fractional (arbitrary) orders differential equations”, Comput. Appl. Math., 23(2004)33–54. http://dx.doi.org/10.1590/S0101-82052004000100002. [22] M.A.C. Groenenboom, P. Hogeweg,” Modelling the dynamics of viral suppressors of RNA silencing”, J. R. Soc. Interface 9(2012), 436–447. http://dx.doi.org/10.1098/rsif.2011.0361. [23] C.P. Li and F.R. Zhang,” A survey on the stability of fractional differential equations”, Eur. Phys. J. Special Topics 193 (2011) 27–47. http://dx.doi.org/10.1140/epjst/e2011-01379-1.[24] W. Lin,” Global existence theory and chaos control of fractio nal differential equations”, J. Math. Anal. Appl. 332 (2007) 709 –726, http://dx.doi.org/10.1016/j.jmaa.2006.10.040 . [25] S. Mlotshwa, O. Voinnet, M. Florian Mette, M. Matzke, H. Vaucheret, S. Wei Ding, G. Pruss, V. B. Vance, “RNA Silencing and the Mobile Silencing Signal”, The Plant Cell, (2002) 289 – 301,http://dx. doi: 10.1105/tpc.001677. [26] S. Nikolov,” Dynamics and Complexity in a Time Delay Mo del of RNA Silencing with Periodic Forcing”, Bioautomation, 10(2008) 1 - 12. [27] Z. Odibat and N. Shawagfeh,” Generalized Taylor’s formula”, Appl. Math. Comput. 186 (2007) 286 –293, http://dx.doi.org/10.1155/2015/507970 . [28] Z. Odibat, and Shaher Moamni,” An algorithm for the numer i cal solution of differential equations of fractional order”, J. Appl. Math. & Informatics, 26(2008) 15 – 27. [29] L.M. Petrovic, D.T. Spasic, T.M. Atanackovic,” On a math ematical model of a human root dentin”, Dental Materials, 21(2005), 125 - 128. http://dx.doi.org/10.1016/j.dental.2004.01.004 . [30] S. Pfeffer, G. Meister, M. Landthaler, T. Tuschl,” RNA silen cing”, B.I.F. Futura, 20 (2005). [31] F.A. Rihan,” Numerical Modeling of Fractional -Order Biolog ical Systems”, Abstract and Applied Analysis, 2013, http://dx.doi.org/10.1155/2013/816803 . [32] V. Suat Ertürk, Zaid M. Odibat, Shaher Momani,” An appro ximate solution of a fractional order differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+T-cells”, Computers and Mathematics with Applications 62 (2011) 996 – 1002. http://dx.doi.org/10.1016/j.camwa.2011.03.091 . [33] What is RNA? : http://www.umassmed.edu/rti/biology/rna -faq/ [34] Why is RNA important to the cell?: https://www.reference.com/science/rna -important -cell - bcdd937bd3cbc9b3.

Full Text link