Numerical algorithm for solving multi-pantograph delay equations on the half-line using Jacobi rational functions with convergence analysis

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorHafez, RM
dc.contributor.authorBhrawy, Ali H
dc.contributor.authorBhrawy, Ali H
dc.contributor.authorDoha, Eid H
dc.date.accessioned2019-12-01T10:59:28Z
dc.date.available2019-12-01T10:59:28Z
dc.date.issued2017-04
dc.descriptionAccession Number: WOS:000400856100005en_US
dc.description.abstractA new spectral Jacobi rational-Gauss collocation (JRC) method is proposed for solving the multi-pantograph delay differential equations on the half-line. The method is based on Jacobi rational functions and Gauss quadrature integration formula. The main idea for obtaining a semi-analytical solution for these equations is essentially developed by reducing the pantograph equations with their initial conditions to systems of algebraic equations in the unknown expansion coefficients. The convergence analysis of the method is analyzed. The method possesses the spectral accuracy. Numerical results indicating the high accuracy and effectiveness of this algorithm are presented. Indeed, the present method is compared favorably with other methods.en_US
dc.description.sponsorshipNational Natural Science Foundation of ChinaNational Natural Science Foundation of China 11021161 10928102 973 Program of ChinaNational Basic Research Program of China 2011CB80800 Chinese Academy of SciencesChinese Academy of Sciences kjcx-yw-s7 Center for Research and Applications in Plasma Physics and Pulsed Power Technology PBCT-Chile-ACT 26 Direccion de Programas de Investigacion, Universidad de Talca, Chileen_US
dc.identifier.doihttps://doi.org/10.1007/s10255-017-0660-7
dc.identifier.issn0168-9673
dc.identifier.otherhttps://doi.org/10.1007/s10255-017-0660-7
dc.identifier.urihttps://link.springer.com/article/10.1007/s10255-017-0660-7
dc.language.isoen_USen_US
dc.publisherSPRINGER HEIDELBERGen_US
dc.relation.ispartofseriesACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES;Volume: 33 Issue: 2 Pages: 297-310
dc.relation.urihttps://cutt.ly/ge2XMFx
dc.subjectUniversity for OPERATIONAL MATRIXen_US
dc.subjectPROPORTIONAL DELAYSen_US
dc.subjectPSEUDOSPECTRAL METHODSen_US
dc.subjectSEMIINFINITE INTERVALen_US
dc.subjectCHEBYSHEV TAU-METHODen_US
dc.subjectBOUNDARY-VALUE-PROBLEMSen_US
dc.subjectVARIATIONAL ITERATION METHODen_US
dc.subjectINITIAL-VALUE PROBLEMSen_US
dc.subjectGAUSS COLLOCATION METHODen_US
dc.subjectORDINARY DIFFERENTIAL-EQUATIONSen_US
dc.subjectconvergence analysisen_US
dc.subjectJacobi rational functionsen_US
dc.subjectJacobi-Gauss quadratureen_US
dc.subjectcollocation methoden_US
dc.subjectdelay equationen_US
dc.subjectmulti-pantograph equationen_US
dc.titleNumerical algorithm for solving multi-pantograph delay equations on the half-line using Jacobi rational functions with convergence analysisen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: