Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study

Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Type

Article

Publisher

Springer

Series Info

International journal of implant dentistry;3, Article number: 31 (2017)

Scientific Journal Rankings

Abstract

Background The aim of this study was to evaluate the biomechanical response of the peri-implant bone to standard, short-wide, and double mini implants replacing missing molar supporting either hybrid ceramic crowns (Lava Ultimate restorative) or full-metal crowns under two different loading conditions (axial and off-axial loading) using strain gauge analysis. Methods Three single-molar implant designs, (1) single, 3.8-mm (regular) diameter implant, (2) single, 5.8-mm (wide) diameter implant, and (3) two 2.5-mm diameter (double) implants connected through a single-molar crown, were embedded in epoxy resin by the aid of a surveyor to ensure their parallelism. Each implant supported full-metal crowns made of Ni-Cr alloy and hybrid ceramic with standardized dimensions. Epoxy resin casts were prepared to receive 4 strain gauges around each implant design, on the buccal, lingual, mesial, and distal surfaces. Results were analyzed statistically. Results Results showed that implant design has statistically significant effect on peri-implant microstrains, where the standard implant showed the highest mean microstrain values followed by double mini implants, while the short-wide implant showed the lowest mean microstrain values. Concerning the superstructure material, implants supporting Lava Ultimate crowns had statistically significant higher mean microstrain values than those supporting full-metal crowns. Concerning the load direction, off-axial loading caused uneven distribution of load with statistically significant higher microstrain values on the site of off-axial loading (distal surface) than the axial loading.

Description

MSA Google Scholar
MSA Google Scholar

Keywords

Mini implants, Short-wide implants, Standard implants, Axial and off-axial loading, Hybrid ceramics, strain gauge analysis

Citation

1. Mazor Z, Lorean A, Mijiritsky E, Levin L. Replacement of a molar with 2 narrow diameter dental implants. Implant Dent. 2012;21(1):36–8. Article PubMed Google Scholar 2. Atwood D. Postextraction changes in the adult mandible as illustrated by micrographs of midsagittal sections and serial cephalometric roentgenograms. J Prosthet Dent. 1963;13:810–24. Article Google Scholar 3. Felice P, Pellegrino G, Checchi L, Pistilli R, Esposito M. Vertical augmentation with interpositional blocks of anorganic bovine bone vs. 7-mm-long implants in posterior mandibles: 1-year results of a randomized clinical trial. Clin Oral Implants Res. 2010;21(12):1394–403. Article PubMed Google Scholar 4. Shatkin T, Petrotto C. Mini dental implants: a retrospective analysis of 5640 implants placed over a 12-year period. Compend Contin Educ Dent. 2012;33 Spec 3(Spec 3):2–9. PubMed Google Scholar 5. Monje A, Chan HL, Fu JH, Suarez F, Galindo-Moreno P, Wang HL. Are short dental implants (<10 mm) effective? A meta-analysis on prospective clinical trials. J Periodontol. 2013;84(7):895–904. 6. Christensen G. The ‘mini’-implant has arrived. J Am Dent Assoc. 2006;13:387–90. Article Google Scholar 7. Flanagan D, Mascolo A. The mini dental implant in fixed and removable prosthetics: a review. J Oral Implantol. 2011;37 Spec No(Special Issue):123–32. Article PubMed Google Scholar 8. Bidez M, Misch C. Force transfer in implant dentistry: basic concepts and principles. J Oral Implantol. 1992;18(3):264–74. PubMed Google Scholar 9. Branemark P, Zarb G, Albrektsson T. Tissue-integrated prosthesis. Osseointegration in clinical dentistry. 1987. p. 129. Google Scholar 10. Strain gauge measurement—a tutorial. 1998 11. Flanagan D. Fixed partial dentures and crowns supported by very small diameter dental implants in compromised sites. Implant Dent. 2008;17(2):182–91. Article PubMed Google Scholar 12. Kheiralla L, Younis J. Peri-implant biomechanical responses to standard, short-wide and mini implants supporting single crowns under axial and off-axial loading (An In-Vitro study). J Oral Implantol. 2014;40(1):42-52. 13. Renouard F, Rangert B. Risk factors in implant dentistry, Quintessence. Second editionth ed. 1999. Google Scholar 14. Mericske-Stern R, Assal P, Merickse E, Ing W. Occlusal force and oral tactile sensibility measured in partially edentulous patients with ITI implants. Int J Oral Maxillofac Implants. 1995;10:345–54. PubMed Google Scholar 15. Bozkaya D, Muftu S, Muftu A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent. 2004;92(6):523–30. Article PubMed Google Scholar 16. Barbier L, Vander SJ, Krzesinski G, Schepers E, Van der Perre G. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. J Oral Rehabil. 1998;25(11):847–58. Article PubMed Google Scholar 17. Saime S, Murat C, Emine Y. The influence of functional forces on the biomechanics of implant-supported prostheses—a review. J Dent. 2002;30:271–82. Article Google Scholar 18. Balshi T, Hernandez R, Pryszlak M, Rangert B. A comparative study of one implant versus two replacing a single molar. Int J Oral Maxillofac Implants. 1996;11(3):372–8. PubMed Google Scholar 19. Sullivan D, Siddiqui A. Wide diameter implants: overcoming problems. Dent Today. 1994;13:50–7. PubMed Google Scholar 20. Bahat O, Handelsman M. Use of wide implants and double implants in the posterior jaw: a clinical report. Int J Oral Maxillofac Implants. 1996;11(3):379–86. PubMed Google Scholar 21. Petropoulos V, Wolfinger G, Balshi T. Complications of mandibular molar replacement with a single implant: a case report. J Can Dent Assoc. 2004;70(4):238–42. PubMed Google Scholar 22. Jackson BJ. Small diameter implants: specific indications and considerations for the posterior mandible: a case report. J Oral Implantol. 2011;37 Spec No:156–64. Article PubMed Google Scholar 23. Misch C. Contemporary implant dentistry. 3rd ed. St. Louis: Elsevier; 2008. p. 264–6. Google Scholar 24. Von Recum A. Handbook of biomaterials evaluation: scientific, technical and clinical testing of implant materials. 1986. Google Scholar 25. Shigley J, Mischke C. Mechanical engineering design. 5th ed. New York: McGraw-Hill; 1989. p. 325–70. Google Scholar 26. Bidez M, Misch C. Issues in bone mechanics related to oral implants. Implant Dent. 1992;1:289–94. Article PubMed Google Scholar 27. Sevimay M, Turhan F, Kiliçarslan M, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent. 2005;93:227–34. Article PubMed Google Scholar 28. Bidez M, Misch C. Clinical biomechanics in implant dentistry. 2005. p. 310–2. Dental implant prosthetics. Google Scholar 29. Misch C, Suzuki I, Misch-Dietch D. A positive correlation between occlusion between occlusal trauma and peri-implant bone loss -literature support. implant dent. 2005;14:108–16. Article PubMed Google Scholar 30. Misch C. Implant design considerations for the posterior regions of the mouth. Implant Dent. 1999;8:376–86. Article PubMed Google Scholar 31. Himmlova L, Dostalova T, Kacovsky A, Konvickova S. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent. 2004;91(1):20–5. Article PubMed Google Scholar 32. Shetty S, Puthukkat N, Bhat S, Shenoy K. Short implants: a new dimension in rehabilitation of atrophic maxilla and mandible. Journal of Interdisciplinary Dentistry. 2014;4(2):66. Article Google Scholar 33. Misch C, Bidez M. Contemporary implant dentistry. 2nd ed. St. Louis: Mosby; 1999. Google Scholar 34. Misch C. Implant body size: a biomechanical and esthetic rationale, Contemporary Implant Dentistry. 2008. p. 160–77. Google Scholar 35. O'Mahony A, Bowles Q, Woolsey G, Robinson S, Spencer P. Stress distribution in the single-unit osseointegrated dental implant: finite element analyses of axial and off-axial loading. Implant Dent. 2000;9(3):207–18. Article PubMed Google Scholar 36. Fawzi S. The effect of dental implant design on bone induced stress distribution and implant displacement. Int J Comput Appl. 2013;74(17):15–20. Google Scholar 37. Flanagan D. Avoiding osseous grafting in the atrophic posterior mandible for implant-supported fixed partial dentures: a report of 2 cases. J Oral Implantol. 2011;37(6):705–11. Article PubMed Google Scholar 38. Seong W, Korioth T, Hodges J. Experimentally induced abutment strains in three types of single-molar implant restorations. J Prosthet Dent. 2000;84:318–26. Article PubMed Google Scholar 39. Jarvis W. Biomechanical advantage of wide-diameter implants. Compend Contin Educ Dent. 1997;18:687–94. PubMed Google Scholar 40. Rangert B, Jemt T, Jörnéus L. Forces and moments on Brånemark implants. Int J Oral Maxillofac Implants. 1989;4:241–7. PubMed Google Scholar 41. Misch CE. A scientific rationale for dental implant design, DENTAL IMPLANT PROSTHETICS. 2005. p. 331. Google Scholar 42. Misch C. Occlusal considerations for implant-supported prostheses, Contemporary Implant Dentistry. 1993. Google Scholar 43. Rangert B. Biomechanical considerations when choosing a platform. Nobel Biocare Global Forum. 1996;10(4):4. Google Scholar 44. Linish V, Peteris A. Restorative factors that affect the biomechanics of the dental implant. Stomatologija, Baltic Dental and Maxillofacial Journal. 2003;5:123–8. Google Scholar 45. Skalak R. Aspects of biomechanical considerations. In: Branemark PI, Zarb GA, Albrektsson, eds. Tissue integrated prostheses. 1985: p. 117–28. 46. Davis D, Rimrott R, Zarb G. Studies on frameworks for osseointegrated prostheses: part 2. The effect of adding acrylic resin or porcelain to form the occlusal superstructure. Int J Oral Maxillofac Implants. 1988;3(4):275–80. PubMed Google Scholar 47. Gracis S, Nicholls J, Chalupnik J, Yuodelis R. Shock-absorbing behavior of five restorative materials used on implants. Int J Prosthodont. 1990;4:282–91. Google Scholar 48. Skalak R. Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent. 1983;49:843–8. Article PubMed Google Scholar 49. Misch C. Clinical biomechanics in implant dentistry, Contemporary Implant Dentistry. 3rd ed. 2008. p. 543–56. mosby,inc. Google Scholar 50. Lundgren D, Laurell L. Biomechanical aspects of fixed bridgework supported by natural teeth and endosseous implants. Periodontol 2000. 1994;4:23–40. Article PubMed Google Scholar 51. Duyck J, Van Oosterwyck H, Vander SJ, De Cooman M, Puers R, Naert I. Influence of prosthesis material on the loading of implants that support a fixed partial prosthesis: in vivo study. Clin Implant Dent Relat Res. 2000;2(2):100–9. Article PubMed Google Scholar 52. Stegaroiu R, Kusakari H, Nishiyama S, Miyakawa O. Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 1998;13(6):781–90. PubMed Google Scholar 53. Stegaroiu R, Khraisat A, Nomura S, Miyakawa O. Influence of superstructure materials on strain around an implant under 2 loading conditions: a technical investigation. Int J Oral Maxillofac Implants. 2004;19(5):735–42. PubMed Google Scholar 54. Desai S, Singh R, Karthikeyan I, Reetika J. Three-dimensional finite element analysis of effect of prosthetic materials and short implant biomechanics on D4 bone under immediate loading. J Dent Implant. 2012;2:2–8. Article Google Scholar 55. Sertgoz A. Finite element analysis study of the effect of superstructure material on stress distribution in an implant-supported fixed prosthesis. Int J Prosthodont. 1997;10(1):19–27. PubMed Google Scholar 56. Wang T, Leu L, Wang J, Lin L. Effects of prosthesis materials and prosthesis splinting on peri-implant bone stress around implants in poor-quality bone: a numeric analysis. Int J Oral Maxillofac Implants. 2002;17(2):231–7.

Full Text link