A Jacobi rational pseudospectral method for Lane-Emden initial value problems arising in astrophysics on a semi-infinite interval
Loading...
Date
2014
Journal Title
Journal ISSN
Volume Title
Type
Article
Publisher
SPRINGER HEIDELBERG
Series Info
COMPUTATIONAL & APPLIED MATHEMATICS;Volume: 33 Issue: 3 Pages: 607-619
Scientific Journal Rankings
Abstract
We derive an operational matrix representation for the differentiation of Jacobi rational functions, which is used to create a new Jacobi rational pseudo spectral method based on the operational matrix of Jacobi rational functions. This Jacobi rational pseudospectral method is implemented to approximate solutions to Lane-Emden type equations on semi-infinite intervals. The advantages of using the Jacobi rational pseudospectral method over other techniques are discussed. Indeed, through several numerical examples, including the Lane-Emden problems of first and second kind, we evaluate the accuracy and performance of the proposed method. We also compare our method to other approaches in the literature. The results suggest that the Jacobi rational pseudospectral method is a useful tool for studying Lane-Emden initial value problems, as well as related problems which have regular singular points and are nonlinear.
Description
Accession Number: WOS:000346924600007
Keywords
University of OPERATIONAL MATRIX; DIFFERENTIAL-EQUATIONS; ALGORITHM
Citation
Cited References in Web of Science Core Collection: 28