Comparing Multi-class Approaches for Motor Imagery Using Renyi Entropy

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorSelim, Sahar
dc.contributor.authorTantawi, Manal
dc.contributor.authorShedeed, Howida
dc.contributor.authorBadr, Amr
dc.date.accessioned2019-11-13T05:58:12Z
dc.date.available2019-11-13T05:58:12Z
dc.date.issued2019
dc.descriptionAccession Number: WOS:000455368700012en_US
dc.description.abstractOne of the main problems that face Motor Imagery-based system is addressing multi-class problem. Various approaches have been used to tackle this problem. Most of these approaches tend to divide multi-class problem into binary sub problems. This study aims to address the multi-class problem by comparing five multi-class approaches; One-vs-One (OVO), One-vs-Rest (OVR), Divide & Conquer (DC), Binary Hierarchy (BH), and Multi-class approaches. Renyi entropy was examined for feature extraction. Three linear classifiers were used to implement these five-approaches: Support Vector Machine (SVM), Multinomial Logistic Regression (MLR) and Linear Discriminant Analysis (LDA). These approaches were compared according to their performance and time consumption. The comparative results show that, Renyi entropy demonstrated its robustness not only as a feature extraction technique but also as a powerful dimension reduction technique, for multi-class problem. In addition, LDA proved to be the best classifier for almost all approaches with minimum execution time.en_US
dc.identifier.citationCited References in Web of Science Core Collection: 17
dc.identifier.citationKim, Y.K., Park, E., Lee, A., Im, C.-H., Kim, Y.-H.: Changes in network connectivity during motor imagery and execution. PLoS One 13(1), 1–18 (2018) Google Scholar 2. Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front. Neurosci. 6, 39 (2012) CrossRefGoogle Scholar 3. Fang, Y., Chen, M., Zheng, X., Harrison, R.F.: Extending CSP to detect motor imagery in a four-class BCI. J. Inf. Comput. Sci. 9, 143–151 (2012) Google Scholar 4. Dong, E., Li, C., Li, L., Du, S., Belkacem, A.N., Chen, C.: Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces. Med. Biol. Eng. Comput. 55(10), 1809–1818 (2017) CrossRefGoogle Scholar 5. Brockmeier, A.J., Santanna, E., Giraldo, L.G.S., Principe, J.C.: Projentropy: using entropy to optimize spatial projections. In: IEEE International Conference on Acoustics, Speech and Signal Processing (2014) Google Scholar 6. Kee, C.-Y., Ponnambalam, S.G., Loo, C.-K.: Binary and multi-class motor imagery using Renyi entropy for feature extraction. Neural Comput. Appl. (2016). https://doi.org/10.1007/s00521-016-2178-y CrossRefGoogle Scholar 7. Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., Pfurtscheller, G.: BCI Competition 2008—Graz Data Set A. Graz University of Technology, Graz (2008) Google Scholar 8. Andino, S.L.G., de Peralta Menendez, R.G., Thut, G., Spinelli, L., Blanke, O., Michel, C.M., Seeck, M., Landis, T.: Measuring the complexity of time series: an application to neurophysiological signals. Hum. Brain Mapp. 11(1), 46–57 (2000) CrossRefGoogle Scholar 9. Rényi, A.: On a new axiomatic theory of probability. Acta Math. Acad. Sci. Hung. 6(3–4), 285–335 (1955) MathSciNetCrossRefGoogle Scholar 10. Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H.: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 141–144 (2003) CrossRefGoogle Scholar 11. Muller, K.R., Anderson, C., Birch, G.: Linear and nonlinear methods for brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 165–169 (2003) CrossRefGoogle Scholar 12. Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. J. Neural Eng. 4(2), R32–R57 (2007) CrossRefGoogle Scholar 13. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006) zbMATHGoogle Scholar 14. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. Ann. Stat. 26(1), 451–471 (1998) MathSciNetzbMATHGoogle Scholar 15. Zhang, D., Wang, Y., Gao, X., Hong, B., Gao, S.: An algorithm for idle-state detection in motor-imagery-based brain-computer interface. Comput. Intell. Neurosci. (2007). https://doi.org/10.1155/2007/39714 CrossRefGoogle Scholar 16. Kumar, S., Ghosh, J., Crawford, M.M.: Hierarchical fusion of multiple classifiers for hyperspectral data analysis. Pattern Anal. Appl. 5, 210–220 (2002) MathSciNetCrossRefGoogle Scholar 17. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)en_US
dc.identifier.doihttps://doi.org/10.1007/978-3-319-99010-1_12
dc.identifier.issn2194-5357
dc.identifier.otherhttps://doi.org/10.1007/978-3-319-99010-1_12
dc.identifier.urihttps://cutt.ly/1e2lEPh
dc.language.isoen_USen_US
dc.publisherSpringer International Publishingen_US
dc.relation.ispartofseriesPROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2018;Volume: 845 Pages: 127-136
dc.relation.urihttps://qrgo.page.link/bMiyX
dc.subjectUniversity for October University for CLASSIFICATIONen_US
dc.subjectMulti-class problemen_US
dc.subjectRenyi entropyen_US
dc.subjectFeature extractionen_US
dc.subjectMotor imageryen_US
dc.subjectBrain Computer Interfaceen_US
dc.titleComparing Multi-class Approaches for Motor Imagery Using Renyi Entropyen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: