A mathematical model with memory for propagation of computer virus under human intervention

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl-Sayed A.A.M.
dc.contributor.authorArafa A.A.M.
dc.contributor.authorKhalil M.
dc.contributor.authorHassan A.
dc.contributor.otherDepartment of Mathematics
dc.contributor.otherFaculty of Science
dc.contributor.otherAlexandria University
dc.contributor.otherAlexandria
dc.contributor.otherEgypt; Department of Mathematics
dc.contributor.otherFaculty of Science
dc.contributor.otherPort Said University
dc.contributor.otherPort Said
dc.contributor.otherEgypt; Department of Mathematics
dc.contributor.otherFaculty of Engineering
dc.contributor.otherOctober University forModern Sciences and Arts(MSA University)
dc.contributor.otherGiza
dc.contributor.otherEgypt; Department of Science and Mathematical Engineering
dc.contributor.otherFaculty of Petroleum and Mining Engineering
dc.contributor.otherSuez University
dc.contributor.otherSuez
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:37Z
dc.date.available2020-01-09T20:41:37Z
dc.date.issued2016
dc.descriptionScopus
dc.description.abstractIn this paper, we propose a fractional order model for the propagation behavior of computer virus under human intervention to study the spread of computer virus across the internet. Numerical simulations are used to show the behavior of the solutions of the proposed fractional order system. � 2016 NSP.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100871775&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.18576/pfda/020203
dc.identifier.doiPubMed ID :
dc.identifier.issn23569336
dc.identifier.otherhttps://doi.org/10.18576/pfda/020203
dc.identifier.otherPubMed ID :
dc.identifier.urihttp://www.naturalspublishing.com/Article.asp?ArtcID=11230
dc.language.isoEnglishen_US
dc.publisherNatural Sciences Publishingen_US
dc.relation.ispartofseriesProgress in Fractional Differentiation and Applications
dc.relation.ispartofseries2
dc.subjectComputer virusen_US
dc.subjectFractional calculusen_US
dc.subjectNumerical solutionen_US
dc.subjectPredictor-corrector methoden_US
dc.titleA mathematical model with memory for propagation of computer virus under human interventionen_US
dc.typeArticleen_US
dcterms.isReferencedByZhang, C., Feng, T., Zhao, Y., Jiang, G., A new model for capturing the spread of computer viruses on complex-networks (2013) Discr. Dyn. Nat. Soc, 2013; Serazzi, G., Zanero, S., Computer virus propagation models (2003) Proceedings of 11th IEEE/ACMSymposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS); http://www.investopedia.com/financial-edge/0512/10-of-the-most-costlycomputer-viruses-of-all-time.aspx, 10 of the most costly computer viruses of all time; Zhu, Q., Yang, X., Ren, J., Modeling and analysis of the spread of computer virus (2012) Commun Nonlin Sci. Numer. Simul, 17, pp. 5117-5124; Shakkottai, S., Srikant, R., Peer to peer networks for defense against internet worms (2007) IEEE, Journal on Selected Areas in Communications, 25, pp. 1745-1752; Gan, C., Yang, X., Liu, W., Zhu, Q., Zhang, X., Propagation of computer virus under human intervention: a dynamical model (2012) Discr. Dyn. Nat. Soc, , 2012; Mishra, B.K., Saini, D., Mathematical models on computer viruses (2007) Appl. Math. Comput, 187, pp. 929-936; Gan, C., Yang, X., Liu, W., Zhu, Q., Jin, J., He, L., Propagation of computer virus both across the Internet and external computers: A complex-network approach (2014) Commun. Nonli. Sci. Numer. Simul, 19, pp. 2785-2792; Piqueira, J.R.C., de Vasconcelos, A.A., Gabriel, C.E.C.J., Araujo, V.O., Dynamic models for computer viruses (2008) Comput. Secur, 27, pp. 355-359; Ding, Y., Ye, H., A fractional-order differential equation model of HIV infection of CD4+ T-cells (2009) Math. Comput. Model, 50, pp. 386-392; El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A., Numerical solution for multi-term fractional (arbitrary) orders differential equations (2004) Comput. Appl. Math, 23, pp. 33-54; G�mez-Aguilar, J.F., Razo-Hern�ndez, R., Granados-Lieberman, D., A physical interpretation of fractional calculus in observables terms: analysis of the fractional time constant and the transitory response (2014) Rev. Mex.Fis, 60, pp. 32-38; Ortigueira, M.D., Coito, F.J., System initial conditions vs derivative initial conditions (2010) Comput. Math. Appl, 59, pp. 1782-1789; Magin, R., Ortigueira, M.D., Podlubny, I., Trujillo, J.J., On the fractional signals and systems (2011) Signal Proc, 91, pp. 350-371; Xue, D.Y., Zhao, C.N., Chen, Y.Q., Fractional order PID control of A DC-motor with elastic shaft: a case study (2006) American Control Conference, pp. 3182-3187; Arafa, A.A.M., Rida, S.Z., Khalil, M., The effect of anti-viral drug treatment of human immunodeficiency (2013) Appl. Math. Model, 37, pp. 2189-2196; El-Sayed, A.M.A., Behiry, S.H., Raslan, W.E., Adomian's decomposition method for solving an intermediate fractional advection dispersion equation (2010) Comput. Math. Appl, 59, pp. 1759-1765; Deng, W., Smoothness and stability of the solutions for nonlinear fractional differential equations (2010) Nonlinear Anal, 72, pp. 1768-1777; Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A., Equilibrium points stability and numerical solutions of fractional-order predator-prey and rabies models (2007) J. Math. Anal. Appl, 325, pp. 542-553; Arafa, A.A.M., Rida, S.Z., Khalil, M., Fractional order model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+T-cells (2011) Adv. Stud. Biol, 3, pp. 347-353; El-Misiery, A.E.M., Ahmed, E., On a fractional model for earthquakes (2006) Appl. Comput. Math, 178, pp. 207-211; El-Sayed, A.M.A., Rida, S.Z., Arafa, A.A.M., On the Solutions of Time-fractional Bacterial Chemotaxis in a Diffusion Gradient Chamber (2009) Int. J. Nonlin. Sci, 7, pp. 485-492; El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A., Numerical solution for multi-term fractional (arbitrary) orders differential equations (2004) Comput. Appl. Math, 23, pp. 33-54; El-Sayed, A.M.A., Rida, S.Z., Arafa, A.A.M., On the solutions of the generalized reaction-diffusion model for bacteria growth (2010) Acta Appl. Math, 110, pp. 1501-1511; El-Sayed, A.M.A., Behiry, S.H., Raslan, W.E., Adomian's decomposition method for solving an intermediate fractional advection dispersion equation (2010) Comput. Math. Appl, 59, pp. 1759-1765; Dzielinski, A., Sierociuk, D., (2010) Fractional order model of beam heating process and its experimental verification, in New trends in nanotechnology and fractional calculus applications, pp. 287-294. , Eds. D. Baleanu, Z. B. Guvenc and J. A. T. Machado, Springer Netherlands; Du, M., Wang, Z., Hu, H., Measuring memory with the order of fractional derivative (2013) Sci. Rep, 3, pp. 221-227; Moaddy, K., Radwan, A.G., Salama, K.N., Momani, S., Hashim, I., The fractional-order modeling and synchronization of electrically coupled neuron systems (2012) Comput. Math. Appl, 64, pp. 3329-3339; Diethelm, K., (2010) The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, , Lecture Notes in Mathematics, 2004, Springer-Verlag, Berlin; Sierociuk, D., Podlubny, I., Petras, I., Experimental evidence of variable-order behavior of ladders and nested ladders (2013) IEEE Trans. Contr. Syst. Tech, 21, pp. 459-466; Pinto, C.M., Machado, J.A.T., Fractional model for malaria transmission under control strategies (2013) Comput. Math. Appl, 66, pp. 908-916; (2014) Machado Fractional Dynamics of Computer Virus Propagation, 2014, p. 7; Varalta, N., Gomes, A.V., Camargo, R.F., A prelude to the fractional calculus applied to tumor dynamic (2014) TEMA (Sao Carlos), 15, pp. 211-221; Salah, M., Abdelouahab, O., Hamri, N.E., The Grunwald-Letnikov fractional-order derivative with fixed memory length, Mediterr (2015) J. Math, pp. 1-16; Ortigueira, M.D., Coito, F.J.V., Trujillo, J.J., Discrete-time differential systems (2015) Signal Proc, 107, pp. 198-217; El-Saka, H.A.A., The fractional-order SIS epidemic model with variable population size (2014) J. Egypt. Math. Soc, 22, pp. 50-54; Rodabazlgh, D., Wesson, J.R., (1965) On the efficient use of predictor-corrector methods in the numerical solution of differential equations, , Technical Report, NASA TN D-2946
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: