A mathematical model with memory for propagation of computer virus under human intervention
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | El-Sayed A.A.M. | |
dc.contributor.author | Arafa A.A.M. | |
dc.contributor.author | Khalil M. | |
dc.contributor.author | Hassan A. | |
dc.contributor.other | Department of Mathematics | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | Alexandria University | |
dc.contributor.other | Alexandria | |
dc.contributor.other | Egypt; Department of Mathematics | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | Port Said University | |
dc.contributor.other | Port Said | |
dc.contributor.other | Egypt; Department of Mathematics | |
dc.contributor.other | Faculty of Engineering | |
dc.contributor.other | October University forModern Sciences and Arts(MSA University) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Department of Science and Mathematical Engineering | |
dc.contributor.other | Faculty of Petroleum and Mining Engineering | |
dc.contributor.other | Suez University | |
dc.contributor.other | Suez | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:41:37Z | |
dc.date.available | 2020-01-09T20:41:37Z | |
dc.date.issued | 2016 | |
dc.description | Scopus | |
dc.description.abstract | In this paper, we propose a fractional order model for the propagation behavior of computer virus under human intervention to study the spread of computer virus across the internet. Numerical simulations are used to show the behavior of the solutions of the proposed fractional order system. � 2016 NSP. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=21100871775&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.18576/pfda/020203 | |
dc.identifier.doi | PubMed ID : | |
dc.identifier.issn | 23569336 | |
dc.identifier.other | https://doi.org/10.18576/pfda/020203 | |
dc.identifier.other | PubMed ID : | |
dc.identifier.uri | http://www.naturalspublishing.com/Article.asp?ArtcID=11230 | |
dc.language.iso | English | en_US |
dc.publisher | Natural Sciences Publishing | en_US |
dc.relation.ispartofseries | Progress in Fractional Differentiation and Applications | |
dc.relation.ispartofseries | 2 | |
dc.subject | Computer virus | en_US |
dc.subject | Fractional calculus | en_US |
dc.subject | Numerical solution | en_US |
dc.subject | Predictor-corrector method | en_US |
dc.title | A mathematical model with memory for propagation of computer virus under human intervention | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Zhang, C., Feng, T., Zhao, Y., Jiang, G., A new model for capturing the spread of computer viruses on complex-networks (2013) Discr. Dyn. Nat. Soc, 2013; Serazzi, G., Zanero, S., Computer virus propagation models (2003) Proceedings of 11th IEEE/ACMSymposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS); http://www.investopedia.com/financial-edge/0512/10-of-the-most-costlycomputer-viruses-of-all-time.aspx, 10 of the most costly computer viruses of all time; Zhu, Q., Yang, X., Ren, J., Modeling and analysis of the spread of computer virus (2012) Commun Nonlin Sci. Numer. Simul, 17, pp. 5117-5124; Shakkottai, S., Srikant, R., Peer to peer networks for defense against internet worms (2007) IEEE, Journal on Selected Areas in Communications, 25, pp. 1745-1752; Gan, C., Yang, X., Liu, W., Zhu, Q., Zhang, X., Propagation of computer virus under human intervention: a dynamical model (2012) Discr. Dyn. Nat. Soc, , 2012; Mishra, B.K., Saini, D., Mathematical models on computer viruses (2007) Appl. Math. Comput, 187, pp. 929-936; Gan, C., Yang, X., Liu, W., Zhu, Q., Jin, J., He, L., Propagation of computer virus both across the Internet and external computers: A complex-network approach (2014) Commun. Nonli. Sci. Numer. Simul, 19, pp. 2785-2792; Piqueira, J.R.C., de Vasconcelos, A.A., Gabriel, C.E.C.J., Araujo, V.O., Dynamic models for computer viruses (2008) Comput. Secur, 27, pp. 355-359; Ding, Y., Ye, H., A fractional-order differential equation model of HIV infection of CD4+ T-cells (2009) Math. Comput. Model, 50, pp. 386-392; El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A., Numerical solution for multi-term fractional (arbitrary) orders differential equations (2004) Comput. Appl. Math, 23, pp. 33-54; G�mez-Aguilar, J.F., Razo-Hern�ndez, R., Granados-Lieberman, D., A physical interpretation of fractional calculus in observables terms: analysis of the fractional time constant and the transitory response (2014) Rev. Mex.Fis, 60, pp. 32-38; Ortigueira, M.D., Coito, F.J., System initial conditions vs derivative initial conditions (2010) Comput. Math. Appl, 59, pp. 1782-1789; Magin, R., Ortigueira, M.D., Podlubny, I., Trujillo, J.J., On the fractional signals and systems (2011) Signal Proc, 91, pp. 350-371; Xue, D.Y., Zhao, C.N., Chen, Y.Q., Fractional order PID control of A DC-motor with elastic shaft: a case study (2006) American Control Conference, pp. 3182-3187; Arafa, A.A.M., Rida, S.Z., Khalil, M., The effect of anti-viral drug treatment of human immunodeficiency (2013) Appl. Math. Model, 37, pp. 2189-2196; El-Sayed, A.M.A., Behiry, S.H., Raslan, W.E., Adomian's decomposition method for solving an intermediate fractional advection dispersion equation (2010) Comput. Math. Appl, 59, pp. 1759-1765; Deng, W., Smoothness and stability of the solutions for nonlinear fractional differential equations (2010) Nonlinear Anal, 72, pp. 1768-1777; Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A., Equilibrium points stability and numerical solutions of fractional-order predator-prey and rabies models (2007) J. Math. Anal. Appl, 325, pp. 542-553; Arafa, A.A.M., Rida, S.Z., Khalil, M., Fractional order model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+T-cells (2011) Adv. Stud. Biol, 3, pp. 347-353; El-Misiery, A.E.M., Ahmed, E., On a fractional model for earthquakes (2006) Appl. Comput. Math, 178, pp. 207-211; El-Sayed, A.M.A., Rida, S.Z., Arafa, A.A.M., On the Solutions of Time-fractional Bacterial Chemotaxis in a Diffusion Gradient Chamber (2009) Int. J. Nonlin. Sci, 7, pp. 485-492; El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A., Numerical solution for multi-term fractional (arbitrary) orders differential equations (2004) Comput. Appl. Math, 23, pp. 33-54; El-Sayed, A.M.A., Rida, S.Z., Arafa, A.A.M., On the solutions of the generalized reaction-diffusion model for bacteria growth (2010) Acta Appl. Math, 110, pp. 1501-1511; El-Sayed, A.M.A., Behiry, S.H., Raslan, W.E., Adomian's decomposition method for solving an intermediate fractional advection dispersion equation (2010) Comput. Math. Appl, 59, pp. 1759-1765; Dzielinski, A., Sierociuk, D., (2010) Fractional order model of beam heating process and its experimental verification, in New trends in nanotechnology and fractional calculus applications, pp. 287-294. , Eds. D. Baleanu, Z. B. Guvenc and J. A. T. Machado, Springer Netherlands; Du, M., Wang, Z., Hu, H., Measuring memory with the order of fractional derivative (2013) Sci. Rep, 3, pp. 221-227; Moaddy, K., Radwan, A.G., Salama, K.N., Momani, S., Hashim, I., The fractional-order modeling and synchronization of electrically coupled neuron systems (2012) Comput. Math. Appl, 64, pp. 3329-3339; Diethelm, K., (2010) The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, , Lecture Notes in Mathematics, 2004, Springer-Verlag, Berlin; Sierociuk, D., Podlubny, I., Petras, I., Experimental evidence of variable-order behavior of ladders and nested ladders (2013) IEEE Trans. Contr. Syst. Tech, 21, pp. 459-466; Pinto, C.M., Machado, J.A.T., Fractional model for malaria transmission under control strategies (2013) Comput. Math. Appl, 66, pp. 908-916; (2014) Machado Fractional Dynamics of Computer Virus Propagation, 2014, p. 7; Varalta, N., Gomes, A.V., Camargo, R.F., A prelude to the fractional calculus applied to tumor dynamic (2014) TEMA (Sao Carlos), 15, pp. 211-221; Salah, M., Abdelouahab, O., Hamri, N.E., The Grunwald-Letnikov fractional-order derivative with fixed memory length, Mediterr (2015) J. Math, pp. 1-16; Ortigueira, M.D., Coito, F.J.V., Trujillo, J.J., Discrete-time differential systems (2015) Signal Proc, 107, pp. 198-217; El-Saka, H.A.A., The fractional-order SIS epidemic model with variable population size (2014) J. Egypt. Math. Soc, 22, pp. 50-54; Rodabazlgh, D., Wesson, J.R., (1965) On the efficient use of predictor-corrector methods in the numerical solution of differential equations, , Technical Report, NASA TN D-2946 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: