Rule-based approach for enhancing the motion trajectories in human activity recognition

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorHassan S.M.
dc.contributor.authorAl-Sadek A.F.
dc.contributor.authorHemayed E.E.
dc.contributor.otherComputer Science Dept.
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.otherMSA
dc.contributor.otherEgypt; Computer Engineering Dept.
dc.contributor.otherFaculty of Engineering
dc.contributor.otherCairo University
dc.contributor.otherGiza
dc.contributor.otherEgypt
dc.date.accessioned2020-01-25T19:58:32Z
dc.date.available2020-01-25T19:58:32Z
dc.date.issued2010
dc.descriptionScopus
dc.description.abstractIn this paper, we propose a rule-based system for semantically understanding and analyzing the motion of the trajectories of the human activity. The proposed system can be used as a preprocessing phase for enhancing the object detection process. Detected trajectories are classified into three categories; normal, semi-normal and abnormal trajectories according to the distances between their adjacent points. Abnormal trajectories are removed from the trajectory space. Semi-normal trajectories are broken into small normal trajectories that are linked later to form a longer normal trajectory. The proposed system does not assume a specific trajectory length and hence is more generic than similar trajectory enhancement approaches. The effectiveness of the proposed approach is demonstrated through several experimental results using known human motion datasets. � 2010 IEEE.en_US
dc.description.sponsorshipMachine Intelligence Research Labs (MIR Labs)en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=19700187901&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1109/ISDA.2010.5687161
dc.identifier.doiPubMed ID :
dc.identifier.isbn9.78E+12
dc.identifier.otherhttps://doi.org/10.1109/ISDA.2010.5687161
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/w1qZP
dc.language.isoEnglishen_US
dc.relation.ispartofseriesProceedings of the 2010 10th International Conference on Intelligent Systems Design and Applications, ISDA'10
dc.subjectAction recognitionen_US
dc.subjectHuman activity recognitionen_US
dc.subjectMotion trajectoryen_US
dc.subjectSIFT algorithmen_US
dc.subjectVisual surviellance systemen_US
dc.subjectAction recognitionen_US
dc.subjectHuman activity recognitionen_US
dc.subjectMotion trajectoriesen_US
dc.subjectSIFT algorithmen_US
dc.subjectVisual surviellance systemen_US
dc.subjectAlgorithmsen_US
dc.subjectImage recognitionen_US
dc.subjectIntelligent systemsen_US
dc.subjectSystems analysisen_US
dc.subjectTrajectoriesen_US
dc.titleRule-based approach for enhancing the motion trajectories in human activity recognitionen_US
dc.typeConference Paperen_US
dcterms.isReferencedByWang, X., Ma, K.T., Ng, G.W., Grimson, E., Trajectory analysis and semantic region modeling using a nonparametric Bayesian model (2008) IEEE Conference on Computer Vision and Patter Recognition CVPR, , June; Fu, Z., Hu, W., Tan, T., Similarity based vehicle trajectory clustering and anomaly detection (2005) Proc. of ICIP, , Sept; Junejo, I., Javed, O., Shah, M., Multi feature path modeling for video surveillance (2004) Proc. of ICPR, , Aug; Wang, X., Tieu, K., Grimson, E., Learning semantic scene models by trajectory analysis (2006) ECCV; Keogh, E.J., Pazzani, M.J., Scaling up dynamic time warping for datamining applications (2000) ACM SIGKDD; Yilmaz, A., Javed, O., Shah, M., Object tracking: A survey (2006) ACM Journal of Computing Surveys, 38 (4); Matikainen, P., Hebert, M., Sukthankar, R., Trajectons: Action recognition through the motion analysis of tracked features (2009) ICCV Workshop on Video-oriented Object and Event Classification; Liu, H., Ferris, R., Kruger, V., Sun, M.T., Unsupervised action classification using space-time link analysis ISCAS 2010; Dhillon, P.S., Nowozin, S., Lampert, C.H., Combining appearance and motion for human action classification in videos (2009) CVPR, , June; Zhu, G., Yang, M., Yu, K., Xu, W., Gong, Y., Detecting video events based on action recognition in complex scenes using spatio-temporal descriptor (2009) Proceedings of the Seventeen ACM International Conferences on Multimedia, , Beijing, China; Ballan, L., Bertini, M., Bimbo, A.D., Seidenari, L., Serra, G., Human action recognition and localization using spatiotemporal descriptors and tracking (2009) Workshop on Pattern Recognition and Artificial Intelligence for Human Behaviour Analysis; Kovashka, A., Grauman, K., Learning a hierarchy of discriminative space-time neighborhood features for human action recognition (2010) CVPR, , June; Li, Z., Fu, Y., Huang, T., Yan, S., Real-time human action recognition by luminance field trajectory analysis (2008) Proceeding of the 16th ACM International Conference on Multimedia; Liu, J., Luo, J., Shah, M., Recognizing realistic actions from videos CVPR 2009; Sun, J., Wu, X., Yan, S., Cheong, L.F., Chua, T.S., Li, J., Hierarchical spatio-temporal context modeling for action recognition CVPR 2009; Wang, Y., Sabzmeydani, P., Mori, G., Semi-latent dirichlet allocation: A hierarchical model for human action recognition (2007) 2nd Workshop on HUMAN MOTION Understanding, Modeling, Capture and Animation, pp. 240-254; Kim, G., Faloutsos, C., Hebert, M., Unsupervised modeling and recognition of object categories with combination of visual contents and geometric similarity links (2008) ACM International Conference on Multimedia Information Retrieval, , October; Kim, G., Faloutsos, C., Hebert, M., Unsupervised modeling of object categories using link analysis techniques CVPR 2008; Kuhn, H.W., The hungarian method for the assignment problem (1955) Naval Research Logistics Quarterly; Zhou, H., Tao, D., Yuan, Y., Li, X., Object trajectory clustering via tensor analysis ICIP 2009; Zhou, H., Wallace, A.M., Green, P.R., Efficient tracking and ego-motion recovery using gait analysis (2009) Signal Processing, 89 (12), pp. 2367-2384; Niebles, J.C., Wang, H., Fei, L.F., Unsupervised learning of human action categories using spatial-temporal words (2008) IJCV, , Sept; Tissainayagam, P., Suter, D., Object tracking in image sequences using point features (2005) Pattern Recognition, 38 (1), pp. 105-113; Tomasi, C., Kanade, T., Detection and tracking of point features (1991) Carnegie Mellon University Technical Report CMU-CS-91-132; Mikolajczyk, K., Schmid, C., A performance evaluation of local descriptors (2005) PAMI, 27 (10); Lowe, D.G., Object recognition from local scale-invariant features ICCV 1999; Se, S., Lowe, D., Little, J., Vision-based mobile robot localization and mapping using scale-invariant features ICRA 2001; Dollar, P., Rabaud, V., Cottrell, G., Belongie, S., Behavior recognition via sparse spatio-temporal features (2005) ICCV'05 Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, , Oct; Laptev, I., Learning realistic human actions from movies CVPR 2008; Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O., Machine recognition of human activities: A survey (2008) IEEE Transactions on Circuits and Systems for Video Technology, 18 (11), pp. 1473-1488; Schuldt, C., Laptev, I., Caputo, B., Recognizing human actions: A local SVM approach (2004) ICPR; Lazebnik, S., Schmid, C., Ponce, J., Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories CVPR 2006
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: