Assessment of three dimensional bone augmentation of severely atrophied maxillary alveolar ridges using prebent titanium mesh vs customized poly-ether-ether-ketone (PEEK) mesh: A randomized clinical trial

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorMounir M.
dc.contributor.authorShalash M.
dc.contributor.authorMounir S.
dc.contributor.authorNassar Y.
dc.contributor.authorEl Khatib O.
dc.contributor.otherOral and Maxillofacial Surgery
dc.contributor.otherFaculty of Dentistry
dc.contributor.otherCairo University and New Giza University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Surgery and Oral Medicine Department
dc.contributor.otherNational Research Centre
dc.contributor.otherCairo
dc.contributor.otherEgypt; Oral and Maxillofacial Surgery
dc.contributor.otherFaculty of Dentistry
dc.contributor.otherMSA University
dc.contributor.other6th of October City
dc.contributor.otherEgypt; Oral and Maxillofacial Surgery
dc.contributor.otherFaculty of Dentistry
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:33Z
dc.date.available2020-01-09T20:40:33Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractBackground: Alveolar bone grafting techniques and dental rehabilitation of patients with maxillary alveolar defects is a very challenging and costly procedure. Various methods have been described to reconstruct these defects in order to facilitate the placement of dental implants. The aim of this study was to assess three dimensional (3D) maxillary ridge augmentation using two innovative, accurate, and time saving protocols. Materials and Methods: Sixteen patients (32 implants) with vertically and horizontally deficient maxillary alveolar ridges, were equally allocated into 2 groups; a mix of particulate autogenous and xenogenic bone grafts loaded in a prebent titanium mesh (Control group) vs patient specific poly-ether-ether ketone meshes (Study group). Radiographic assessment was performed preoperatively, 1 week and 6 months postoperatively. Assessment included measurements of linear changes in the vertical and horizontal dimensions on cross sectional cuts of cone beam computed tomography using special software. Finally; the percentage of 3D bone gain in each group was compared to that of the other. Results: Wound healing was uneventful for all cases except one patient in each group were the meshes were exposed 2 weeks' postsurgery. There was no statistical significance between both groups (P value = 0.2). Conclusion: Within the limitations of the sample size of this study, both techniques could be used as a successful method of ridge augmentation with no statistical significance between them. � 2019 Wiley Periodicals, Inc.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=24403&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1111/cid.12748
dc.identifier.doiPubMed ID : 30895678
dc.identifier.issn15230899
dc.identifier.otherhttps://doi.org/10.1111/cid.12748
dc.identifier.otherPubMed ID : 30895678
dc.identifier.urihttps://t.ly/kNNBL
dc.language.isoEnglishen_US
dc.publisherBlackwell Publishing Ltden_US
dc.relation.ispartofseriesClinical Implant Dentistry and Related Research
dc.relation.ispartofseries21
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectbone augmentationen_US
dc.subjectCAD-CAMen_US
dc.subjectmeshen_US
dc.subjectpatient specificen_US
dc.subjectPEEKen_US
dc.subjecttitaniumen_US
dc.subjectetheren_US
dc.subjectether derivativeen_US
dc.subjectketoneen_US
dc.subjecttitaniumen_US
dc.subjectalveolar boneen_US
dc.subjectalveolar ridge augmentationen_US
dc.subjectbone transplantationen_US
dc.subjectcontrolled studyen_US
dc.subjectcross-sectional studyen_US
dc.subjecthumanen_US
dc.subjectmaxillaen_US
dc.subjectrandomized controlled trialen_US
dc.subjectsurgical meshen_US
dc.subjecttooth implantationen_US
dc.subjectAlveolar Processen_US
dc.subjectAlveolar Ridge Augmentationen_US
dc.subjectBone Transplantationen_US
dc.subjectCross-Sectional Studiesen_US
dc.subjectDental Implantation, Endosseousen_US
dc.subjectEtheren_US
dc.subjectEthersen_US
dc.subjectHumansen_US
dc.subjectKetonesen_US
dc.subjectMaxillaen_US
dc.subjectSurgical Meshen_US
dc.subjectTitaniumen_US
dc.titleAssessment of three dimensional bone augmentation of severely atrophied maxillary alveolar ridges using prebent titanium mesh vs customized poly-ether-ether-ketone (PEEK) mesh: A randomized clinical trialen_US
dc.typeArticleen_US
dcterms.isReferencedBySmeet, R., Stadlinger, B., Frank, S., Impact of dental implant surface modifications on osseointegration (2016) Biomed Res Int, 2, pp. 1-16; Buser, D., Martin, W., Belser, U.C., Optimizing esthetics for implant restorations in the anterior maxilla: anatomic and surgical considerations (2004) Int J of Oral & MaxillofacImplants, 19, pp. 43-61; Jegham, H., Masmoudi, R., Ouertani, H., Ridge augmentation with titanium mesh. A Case Report (2017) J Stomatol, Oral and Maxillofac Surg, 118 (3), pp. 181-186; Milinkovic, I., Cordaro, L., Are there specific indications for the different alveolar bone augmentation procedures for implant placement? A systematic review (2014) Int J Oral and Maxillofac Surg, 43 (5), pp. 606-625; Rocchietta, I., Fontana, F., Simion, M., Clinical outcomes of vertical bone augmentation to enable dental implant placement: a systematic review (2008) J Clin Periodontol, 35 (8), pp. 203-215; Rakhmatia, Y.D., Ayukawa, Y., Furuhashi, A., Koyano, K., Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications (2013) J Prosthodont Res, 57, pp. 3-14; Huiping, L., Jisi, Z., Shanyong, Z., Experiment of GBR for repair of Peri-implant alveolar defects in beagle dogs (2018) Sci Rep, 8, p. 16532. , https://doi.org/10.1038/S41598-018-34805-W; Donos, N., Kostopoulos, L., Karring, T., Alveolar ridge augmentation by combining autogenous mandibular bone grafts and non-resorbable membranes (2002) Clin Oral Implants Res, 13, pp. 185-191; Donos, N., Kostopoulos, L., Tonetti, M., Karring, T., Long-term stability of autogenous bone grafts following combined application with guided bone regeneration (2005) Clin Oral Implants Res, 16, pp. 133-139; Rakhmatia, Y., Ayukawa, Y., Furuhashi, A., Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications (2012) J Prosthodont Res, 57 (1), pp. 3-14; Di Stefano, D.A., Greco, G.B., Cinci, L., Pieri, L., Horizontal-guided bone regeneration using a titanium mesh and an equine bone graft (2015) J Contemp Dent Pract, 16 (2), pp. 154-162; De Moraes, P.H., Olate, S., Albergaria-Barbosa, J.R., Maxillary reconstruction using rhBMP-2 and titanium mesh. Technical note about the use of stereolithographic model (2015) Int J Odont, 9 (1), pp. 149-152; Sumida, T., Otawa, N., Kamata, Y.U., Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh (2015) J Craniomaxfac Surg, 43 (10), pp. 2183-2188; Panayotov, I.V., Orti, V., Cuisinier, F., Polyetheretherketone (PEEK) for medical applications (2016) J Mater Sci: Mater Med, 27 (7), p. 118. , https://doi.org/10.1007/s10856-016-5731-4; Mounir, M., Atef, M., Abou-Elfetouh, A., Titanium and polyether ether ketone (PEEK) patient-specific sub-periosteal implants: two novel approaches for rehabilitation of the severely atrophic anterior maxillary ridge (2017) Int J Oral Maxillofac Surg, 47 (5), pp. 658-664; Mounir, M., Beheiri, G., El-Beialy, W., Assessment of marginal bone loss using full thickness versus partial thickness flaps for alveolar ridge splitting and immediate implant placement in the anterior maxilla (2014) Int J Oral Maxillofac Surg, 43 (11), pp. 1373-1380; Benic, G.I., Hammerle, C.H., Horizontal bone augmentation by means of guided bone regeneration (2014) Periodontology 2000, 66 (66), pp. 13-40; Hardwick, R., Scantlebury, T., Sanchez, R., Membrane design criteria for guided bone regeneration of the alveolar ridge (1994) Guided Bone Regeneration in Implant Dentistry, 101. , Buser D, Dahlin C, Schenk R, eds., Vol, Chicago, IL, Quintessence; Otawa, N., Sumida, T., Kitagaki, H., Custom-made titanium devices as membranes for bone augmentation in implant treatment: modeling accuracy of titanium products constructed with selective laser melting (2015) J Craniomaxillofac Surg, 43 (7), pp. 1289-1295; Miyamoto, I., Funaki, K., Yamauchi, K., Kodama, T., Takahashi, T., Alveolar ridge reconstruction with titanium mesh and autogenous particulate bone graft: computed tomography-based evaluations of augmented bone quality and quantity (2012) Clin Implant Dent Relat Res, 14 (2), pp. 304-311; Yong, R., Sandhu, S., Bramanti, T., A guided bone regeneration technique for vertical bony augmentation in the maxilla J Dental Implants, 4 (2), pp. 195-200. , 2104; Alagl, A.S., Madi, M., Localized ridge augmentation in the anterior maxilla using titanium mesh, an alloplast, and a nano-bone graft: a case report (2018) J Int Med Res, 46 (5), pp. 2001-2007; Watzinger, F., Luksch, J., Millesi, W., Guided bone regeneration with titanium membranes: a clinical study (2000) British J Oral Maxillofac Surg, 38 (4), pp. 312-315; Her, S., Kang, T., Fien, M.J., Titanium mesh as an alternative to a membrane for ridge augmentation (2012) J Oral Maxillofac Surg, 70 (4), pp. 803-810; Ciocca, L., Lizio, G., Baldissara, P., Sambuco, A., Scotti, R., Corinaldesi, G., Prosthetically CAD-CAM�guided bone augmentation of atrophic jaws using customized titanium mesh: preliminary results of an open prospective study (2018) J Oral Implant, 44 (2), pp. 131-137; Suresh, V., Anolik, R., Powers, D., The utility of polyether-ether-ketone implants adjacent to sinus cavities after craniofacial trauma (2018) J Oral and Maxillofacial Surg, , https://doi.org/10.1016/j.joms.2018.05.002; Honigmann, P., Sharma, N., Okolo, B., Popp, U., Msallem, B., Thieringer, F.M., Patient-specific surgical implants made of 3D printed PEEK: material, technology, and scope of surgical application (2018) Biomed Res Int, 2018, pp. 1-8. , https://doi.org/10.1155/2018/4520636; Anotti, B., Zingaretti, N., Verlicchi, A., Cranioplasty: review of materials (2016) J Craniofac Surg, 27, pp. 2061-2072
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: