Mathematical model of vector-borne plant disease with memory on the host and the vector

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorRida S.Z.
dc.contributor.authorKhalil M.
dc.contributor.authorHosham H.A.
dc.contributor.authorGadellah S.
dc.contributor.otherDepartment of Mathematics
dc.contributor.otherFaculty of Science
dc.contributor.otherSouth Valley University
dc.contributor.otherQena
dc.contributor.otherEgypt; Department of Mathematics
dc.contributor.otherFaculty of Engineering
dc.contributor.otherModern Science and Arts University (MSA)
dc.contributor.otherGiza
dc.contributor.otherEgypt; Department of Mathematics
dc.contributor.otherFaculty of Science
dc.contributor.otherAl Azhar University
dc.contributor.otherAssiut
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:33Z
dc.date.available2020-01-09T20:41:33Z
dc.date.issued2016
dc.descriptionScopus
dc.description.abstractIn this paper, we introduce a fractional order model of vector-borne plant diseases. Memory in both the host, and the vector population provides essential tools to understand the behavior of plant diseases. We use the presented model to study the effects of memory on the host and the vector. The fractional order derivative which is considered as the index of memory is described in the Caputo sense. � 2016 NSP.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100871775&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.18576/pfda/020405
dc.identifier.doiPubMed ID :
dc.identifier.issn23569336
dc.identifier.otherhttps://doi.org/10.18576/pfda/020405
dc.identifier.otherPubMed ID :
dc.identifier.urihttp://www.naturalspublishing.com/files/published/m111ds622rkm5p.pdf
dc.language.isoEnglishen_US
dc.publisherNatural Sciences Publishingen_US
dc.relation.ispartofseriesProgress in Fractional Differentiation and Applications
dc.relation.ispartofseries2
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectFractional calculusen_US
dc.subjectNumerical solutions of fractional order modelsen_US
dc.subjectPlant diseases modelsen_US
dc.titleMathematical model of vector-borne plant disease with memory on the host and the vectoren_US
dc.typeArticleen_US
dcterms.isReferencedByWilkinson, K., Grant, W.P., Green, L.E., Hunter, S., Jeger, M.J., Lowe, P., Medley, G.F., Waage, J., Infectious diseases of animals and plants: an interdisciplinary approach (2011) Phil. Trans. R. Soc. B, 366, pp. 1933-1942; Pscheidt, J.W., Plant diseases Kentucky master gardener manual chapter 6 Development cooperative extension service university of Kentucky college of agriculture, , Lexington; http://www.encyclopedia.com/topic/Plantdiseases.aspx, Encyclopedia.com; Xiao, Y., Van den Bosch, F., The dynamics of an eco-epidemic model with biological control (2003) Ecol.Model, 168, pp. 203-214; Xue, L., Scott, H.M., Cohnstaedt, L.W., Scoglio, C., A network-based meta-population approach to model Rift valley fever epidemics (2012) J. Theor. Biol, 306 (5), pp. 129-144; Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A., Equilibrium points stability and numerical solutions of fractional-order predator prey and rabies models (2007) J. Math. Anal. Appl, 325, pp. 542-553; Butzer, P.L., Westphal, U., An introduction to fractional calculus, Applications of fractional calculus in physics (2000) World Scientific, pp. 1-85. , Singapore; Miller, K.S., Ross, B., (1993) An introduction to the fractional calculus and fractional differential equations, , John Wiley & Sons, INC; Djordjevi?, V.D., Jari?, J., Fabry, B., Fredberg, J.J., Stamenovi?, D., Fractional derivatives embody essential features of cell rheological behavior (2003) Ann. Biomed. Eng, 31, pp. 692-699; El-Sayed, A.M., Rida, S.Z., Arafa, A.A.M., On the solutions of time-fractional bacterial chemotaxis in a diffusion gradient chamber (2009) Int. J. Nonlinear Sci, 7, pp. 485-492; Shi, R., Zhao, H., Tang, S., Global dynamic analysis of a vector-borne plant disease model (2014) Adv. Differ. Equ, 59; Sardar, T., Rana, S., Bhattacharya, S., Al-Khaled, K., Chattopadhyay, J., A generic model for a single strain mosquito-transmitted disease with memory on the host and the vector (2015) Math. Biosci, 263, pp. 18-36; Diethelm, K., Ford, N.J., Analysis of fractional differential equations (2002) J. Math. Anal. Appl, 265, pp. 229-248; Muldowney, J.S., Compound matrices and ordinary differential equations (1990) Rocky Mount. J. Math, 20, pp. 857-872; Safan, M., Rihan, F.A., Mathematical analysis of an SIS model with imperfect vaccination and backward bifurcation (2014) Math. Comput. Simul, 96, pp. 195-206; Odibat, Z., Shawagfeh, N.T., Generalized Taylor's formula (2007) Appl. Math. Comput, 186, pp. 286-293; Lin, W., Global existence theory and chaos control of fractional differential equations (2007) Aust. J. Math. Anal. Appl, 332, pp. 709-726; Matignon, D., Stability results for fractional differential equations with applications to control processing (1996) Computational Eng. Sys. Appl, 2, p. 963. , Lille, France; El-Sayed, A.M., Nasr, M.E., Existence of uniformly stable solutions of non-autonomous discontinuous dynamical systems (2011) J. Egyptian Math. Soc, 19, pp. 91-94; El-Sayed, A.M.A., On the existence and stability of positive solution for a nonlinear fractional-order differential equation and some applications (2010) Alex. J. Math, 1, pp. 1-10; Odibat, Z., Momani, S., An algorithm for the numerical solution of differential equations of fractional order (2008) J. Appl. Math. Inf, 26, pp. 15-27
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
m111ds622rkm5p.pdf
Size:
284.72 KB
Format:
Adobe Portable Document Format
Description: