Path and Path Deviation Equations in Kaluza-Klein Type Theories

Thumbnail Image

Date

2005

Journal Title

Journal ISSN

Volume Title

Type

Article

Publisher

arXiv.org e-Print archive

Series Info

arXiv.org e-Print archive;

Doi

Scientific Journal Rankings

Abstract

Path and path deviation equations for charged, spinning and spinning charged objects in different versions of Kaluza-Klein (KK) theory using a modified Bazanski Lagrangian have been derived. The significance of motion in five dimensions, especially for a charged spinning object, has been examined. We have also extended the modified Bazanski approach to derive the path and path deviation equations of a test particle in a version of non-symmetric K-K theory.

Description

MSA Google Scholar

Keywords

University of Path Deviation Equations in Kaluza-Klein

Citation

[1] Collins, P. Martin,A. and Squires, E. ”(1989)Particle Physics and Cosmology”,John Wiley and Sons, New York. [2] Gabaadaze, G.(2003)”Summer School on Astrophysics and Cosmology” 17 June5 July 2002. ICTP, Trieste, Italy [3] Overduin, J.M. and Wesson, P.S. (1997), Physics Reports, 303 [4] Dick, R.(2001), Class. Quant. Grav., 18, R1. [5] Ponce de Leon, J. (2003); gr-qc/ 0310780 [6] Ponce de Leon, J. (2003) gr/qc0310078 [7] Liko, T., Overduin, J.M. and Wesson, P.S. (2005) gr-qc/0311054. [8] Kalinowski, M.W. (1989), Non-Symmetric Field Theory and its Applications, Institute of Theoretical Physics, Warsow University. [9] Bazanski, S.I. (1989) J. Math. Phys., 30, 1018. [10] Wanas, M.I. and Kahil, M.E.(1999) Gen. Rel. Grav., 31, 1921. ; gr-qc/9912007 [11] Wanas, M.I., Melek, M. and Kahil, M.E.(1995) Astrophys. Space Sci.,228, 273.; gr-qc/0207113. [12] Sen, D.K. (1968), Fields and/or Particles, The Ryerson Press Toronto. [13] Ravndal, F. (1980), Phys Rev. D, 20, 367. [14] Dixon, W.G. (1970), Proc. Roy. Soc. Lond A314,499. 9 [15] Kerner,R. Martin,J. Mignemi,S. and van Holten,J-W. (2003), Phys Rev D, 63, 027502. [16] Nieto, J.A., Saucedo, J. and Villanueva, V.M. (2003) Phys. Lett. A312, 175 ; hep-th/0303123. [17] Papapetrou, A.(1951), Proc. Roy.Soc. Lond A208,248. [18] Legar´e, J. and Moffat, J.W. (1996), Gen. Rel. Grav., 26, 1221. [19] Buchner, K. and Kahil, M.E. (2004) Private communication, TUM Munich, Germany. [20] Kalinowski, M.W.(1982), Phys. Rev.D 26, 3149. [21] Moffat, J.W. (1979), Phys. Rev.D 19, 3554. [22] Einstein, A. (1955) The Meaning of Relativity, Princeton Univ. Press New Jersey. [23] Durra R., Kocian, P. (2004) Class. Quant. Grav., 21, 2127. [24] Dahia, E., Monte,M. and Romaro,C. (2003), Mod.Phys.Lett.A18,1773;gr-qc/0209013 [25] Wesson, P. (2004) Gen.Rel. Grav., 36, 451. [26] Ponce de Leon, J. (2002); gr-qc/ 0104008 [27] Seahra, S. (2002); gr-qc/0204032 [28] Liu, H. and Mashhoon, B. (2000), Phys. Lett. A, 272,26 ; gr-qc/0050079 [29] Liu,H. and Wesson, P.S (1996), Class Quan. Grav., 11, 1341 . [30] Chen, X. (2005), gr-qc/05010341. [31] Wanas, M.I.(1998) Astrophys. Space Sci., 258, 237 ; gr-qc/9904019. [32] Wanas, M.I., Melek, M. and Kahil, M.E. (2000) Grav. Cosmol., 6 , 319. [33] Wanas, M.I., Melek, M. and Kahil, M.E. (2002) Proc. MG IX, part B, p.1100, Eds. V. Gurzadyan et al., World Scientific Singapore.

Full Text link