A novel brain computer interface based on Principle Component Analysis and Fuzzy Logic

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorLabib S.S.
dc.contributor.otherFaculty of Computer Science
dc.contributor.otherOctober University for Modern Science and Arts
dc.contributor.otherGiza
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:36Z
dc.date.available2020-01-09T20:41:36Z
dc.date.issued2016
dc.descriptionScopus
dc.description.abstractBrain computer interface (BCI) systems measure brain signal and translate it into control commands in an attempt to mimic specific human thinking activities. In recent years, many researchers have shown their interests in BCI systems, which has resulted in many experiments and applications. The main issue to build applicable Brain-Computer Interfaces is the capability to classify the Electroencephalograms (EEG). The purpose behind this research is to improve a model for brain signals analysis. We have used high pass filter to remove artifacts, discrete wavelet transform algorithms for feature extraction and statistical features like Mean Absolute Value, Root Mean Square, and Simple Square Integral are used, also we have used principle component analysis to reduce the size of feature vector and we used fuzzy Gaussian membership function to optimize the classification phase. It has been depicted from results that the proposed integrated techniques outperform a better performance than methods mentioned in literature. � 2016 IEEE.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100465239&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1109/ICDIPC.2016.7470787
dc.identifier.doiPubMed ID :
dc.identifier.isbn9.78E+12
dc.identifier.otherhttps://doi.org/10.1109/ICDIPC.2016.7470787
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/BJP2p
dc.language.isoEnglishen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofseries2016 6th International Conference on Digital Information Processing and Communications, ICDIPC 2016
dc.subjectBrain Computer Interfaceen_US
dc.subjectEEGen_US
dc.subjectPrinciple Component Analysisen_US
dc.subjectSupport Vector Machineen_US
dc.subjectWavelet Transformen_US
dc.subjectBioelectric phenomenaen_US
dc.subjectBiomedical signal processingen_US
dc.subjectBrainen_US
dc.subjectComputer control systemsen_US
dc.subjectDiscrete wavelet transformsen_US
dc.subjectElectroencephalographyen_US
dc.subjectFeature extractionen_US
dc.subjectFuzzy filtersen_US
dc.subjectFuzzy logicen_US
dc.subjectHigh pass filtersen_US
dc.subjectImage retrievalen_US
dc.subjectInformation scienceen_US
dc.subjectInterfaces (computer)en_US
dc.subjectMembership functionsen_US
dc.subjectPrincipal component analysisen_US
dc.subjectSupport vector machinesen_US
dc.subjectWavelet transformsen_US
dc.subjectControl commanden_US
dc.subjectDiscrete wavelet transform algorithmsen_US
dc.subjectElectro-encephalogram (EEG)en_US
dc.subjectGaussian membership functionen_US
dc.subjectIntegrated techniquesen_US
dc.subjectPrinciple component analysisen_US
dc.subjectRoot Mean Squareen_US
dc.subjectStatistical featuresen_US
dc.subjectBrain computer interfaceen_US
dc.titleA novel brain computer interface based on Principle Component Analysis and Fuzzy Logicen_US
dc.typeConference Paperen_US
dcterms.isReferencedByWolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M., Braincomputer interfaces for communication and control (2002) Clinical Neurophysiology, 113 (6), pp. 767-791; Lotte, F., Study of electroencephalographic signal processing and classification techniques towards the use of brain-computer interfaces in virtual reality applications 2008 LNSA de Rennes; Cichocki, A., Washizawa, Y., Rutkowski, T., Bakardjian, H., Phan, A.H., Choi, S., Li, Y., Noninvasive BCIs: Multiway signal-processing array decompositions (2008) Computer, (10), pp. 34-42; Kang, J., Signal Acquisition in Brain-Computer Interface; Weinberger, K.Q., Blitzer, I., Saul, L.K., Distance metric learning for large margin nearest neighbor classification (2005) Advances in Neural Information Processing Systems, pp. 1473-1480; McFarland, O.J., Wolpaw, L.R., Brain-computer interfaces for communication and control (2011) Communications of the ACM, 54 (5), pp. 60-66; Brunner, C., (2008) BCI Competition 2008-Graz Data Set A, pp. 136-142. , Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology; Tangermann, M., Miiller, K.R., Aertsen, A., Birbaumer, N., Braun, C., Brunner, C., Nolte, G., Review of the BCI competition IV (2012) Front Neurosci, 6 (55), p. 2; Zhang, H., Guan, C., Ang, K.K., Wang, C., Chin, Z., BCI competition IV-data set I: Learning discriminative patterns for self-paced EEG-based motor imagery detection (2012) Frontiers in Neuroscience, 6, p. 7; (2013), http://www.bbci.de/competitionliv/results/, BCI Competition IV results. March; Oh, S.-H., Lee, Y.-R., Kim, H.-N., A novel EEG feature extraction method using hjorth parameter (2014) International Journal of Electronics and Electrical Engineering, 2 (2), pp. 106-110; Bentiemsan, M., Zemouri, E.T., Bouchaflra, D., YahyaZoubir, B., Ferroudji, K., Random forest and filter bank common spatial patterns for eegbased motor imagery classification (2014) Intelligent Systems, Modelling and Simulation (ISMS) 2014 5th International Conference on, pp. 235-238. , January. IEEE; Lotte, F., Lecuyer, A., Lamarche, F., Studying the use of fuzzy inference systems for motor imagery classification (2007) IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15 (2), pp. 322-332
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: