A VARIABLE FRACTIONAL ORDER NETWORK MODEL OF ZIKA VIRUS

Loading...
Thumbnail Image

Date

2018

Journal Title

Journal ISSN

Volume Title

Type

Article

Publisher

Journal of Fractional Calculus and Applications

Series Info

Journal of Fractional Calculus and Applications;Vol. 9(1) Jan. 2018, pp. 204-221.

Doi

Scientific Journal Rankings

Abstract

A variable fractional-order network model of Zika is presented in this paper. We also carry out a detailed analysis on the equilibrium points and its stability. Numerical solutions are obtained using a predictor-corrector method to handle the fractional derivatives. The fractional derivatives are de- scribed in the Caputo sense. Numerical simulations are presented to illustrate the results. Also, the numerical simulations show that, modeling the Zika vari- able fractional order model has more advantages than classical integer-order modeling.

Description

Keywords

University for ZIKA VIRUS, FRACTIONAL ORDER

Citation

[1] R. L. J. S. Allen, \An Introduction to Mathematical Biology": New Jersey, Pearson Prentice Hall, Upper Saddle River, 2006. [2] A. A. M. Arafa, S.Z. Rida, and M. Khalil," The effect of anti-viral drug treatment of human immunode ciency", Appl. Math. Model., vol.37, no.4, pp. 2189{2196, 2013. [3] A. Atangana, and A.H. Cloot, \Stability and convergence of the space fractional variable- order Schrodinger equation", Adv. Differ. Equ., vol.2013, no.80, 2013. [4] A. H. Bhrawy, and M. A. Zaky, \Numerical simulation for two- dimensional variable-order fractional nonlinear cable equation", Nonlinear Dyn., vol.80, no. (1-2), pp.101-116, 2015. [5] A. V. Chechkin, R. Goren o, and I.M. Sokolov, "Fractional diffusion in inhomogeneous me- dia", J. Phys. A: Math. Gen., vol.38, no. 42, 2005. [6] A. V. Chechkin, V. Yu. Gonchar, R. Goren o, N. Korabel, and I.M. Sokolov, \Generalized fractional diffusion equations for accelerating sub diffusion and truncated Levy ights", Phys. Rev., vol. 78, no.2, 2008. [7] G. Diaz, and C.F.M Coimbra, \Nonlinear dynamics and control of a variable order oscilla- tor with application to the van del Pol equation", Nonlinear Dyn., vol. 56,no.(1-2),pp.145- 157,2009. [8] K. Diethelm, \Analysis of Fractional Differential Equation: An Application-Oriented Expo- sition Using Differential Operators of Caputo Type", Springer-Verlag, Berlin, Heidelberg, 2010. [9] H. El saka, E. Ahmed," a fractional order network model of Zika" ,BioRxiv,2016. [10] H. A. El-Saka and A. El-Sayed, \Fractional Order Equations and Dynamical Systems", Lam- bert Academic Publishing, Germany, 2013. [11] H. A. El-Saka, \The fractional-order SIR and SIRS epidemic models with variable population size", Math. Sci. Lett., vol.2, No. 3, pp. 1-6, 2013. [12] S. Funk, A. J. Kucharski, A. Camacho, R. M. Eggo, L. Yakob, L. M. Murray, and W. John Edmunds," Comparative analysis of dengue and Zika outbreaks reveals differences by setting and virus", PLOS Negl.Trop. Dis., 2016. [13] K. Gao, and D.Y. Hua," Effects of immunity on global oscillations in epidemic spreading in small-world networks", Physics Procedia, vol.3, no.5, pp.1801{1809, 2010. [14] D. Gao, Y. Lou, D. He, T. C. Porco, Y. Kuang, G. Chowell, and S. Ruan," Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling analysis", Scienti c Reports, vol.6, 2016. [15] W. G. Glockle, T. F. Nonnenmacher,"A fractional calculus approach of self-similar protein dynamics", Biophys. J., vol.68, no.1, pp. 46{53, 1995. [16] H. W. Hethcote," The mathematics of infectious diseases". SIAM Rev., vol. 42, no.4, pp.599{ 653, 2000. [17] Y. Hua, Lequan Minab and Y. Kuang, \Modeling the dynamics of epidemic spreading on homogenous and heterogeneous networks", Applicable Analysis: An International Journal, vol. 94, no.11, pp.1308-2330, 2015. [18] R. Isea, and E. Karl Lonngren, \A Preliminary Mathematical Model for the Dynamic Trans- mission of Dengue, Chikungunya and Zika", American Journal of Modern Physics and Ap- plication, Vol. 3, No. 2, pp.11-15, 2016. [19] V. Isham, S. Harden, and M. Nekovee, \Stochastic epidemics and rumors on nite random networks," Physica A, vol. 389, no. 3, pp. 561{576, 2010. [20] M. J. Keeling, and P. Rohani," Modeling Infectious Diseases in Humans and Animals", NJ, Princeton University Press, 2008. [21] M. Khalid, and Fareeha Sami Khan, \Stability Analysis of Deterministic Mathematical Model for Zika Virus", British Journal of Mathematics & Computer Science, vol.19, no.4, pp.1-10, 2016. [22] G. C. Korobeinikov Wake, "Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models", Appl. Math. Lett., vol.15, no.8, pp. 955{960, 2002. [23] A. j. Kucharski, S. Funk, R.M. Eggo, H.P. Mallet, W. J. Edmunds, E. J. Nilles, \Transmission dynamics of Zika virus in island populations: a modeling analysis of the 2013-14 French Polynesia outbreak", PLOS Negl. Trop. Dis., vol. 10, no. 5, pp. e0004726, 2016. [24] C. Li, and W. Deng, "Remarks on fractional derivatives", Appl. Math. Comput., vol.187, no.2, pp.777-784, 2007. [25] C. F. Lorenzo, and T.T. Hartley, "Variable order and distributed order fractional operators", Nonlinear Dyn., vol.29, no.1, pp.57-98, 2002. [26] D. Matignon, \Stability results for fractional differential equations with applications to con- trol processing", In: IEEE-SMC Proceedings, Computational Engineering in Systems Appli- cations Multi-Conference ,IMACS , vol. 2, pp. 963{968,1996. [27] C. A. Monje, Y. Q. Chen , B. M. Vinagre, D. Xue, and V. Feliu , \Fractional-order Systems and Controls": Fundamentals and Applications. Springer-Verlag, London, 2010. [28] Z. Odibat, and N. Shawagfeh, \Generalized Taylor's formula", Appl. Math. Comput., vol.186, no.1, pp.286-293, 2007. [29] M. D. Ortigueira, F.J. V. Coito and J.J. Trujillo," Discrete-time differential systems. Signal Processing", vol. 107, no.22, pp.198{217, 2015. [30] L. M. Petrovic, D.T. Spasic, and T. M. Atanackovic, \On a mathematical model of a human root dentin", Dental Materials, vol. 21, no.2, pp. 125-128, 2005. [31] C. M. A. Pinto and J. A. T. Machado,"Fractional model for malaria transmission under control strategies", Computers and Mathematics with Applications, vol. 66, no.5,pp. 908{ 916, 2013. [32] I. Podlubny, \Fractional Differential Equations", Academic Press, San Diego. California, USA, 1999. [33] S. G. Samko, \Fractional integration and differentiation of variable order", Analysis Mathe- matics, vol. 21, no.3, p.213-236, 1995. [34] S. Samko, \Fractional integration and differentiation of variable order: an overview", Non- linear Dyn., vol.71, no.4, pp.653-662, 2013. [35] S. G. Samko, and B. Ross,"Integration and differentiation to a variable fractional order", Integral Transform. Spec. Funct., vol.1, no.4, pp. 277-300, 1993. [36] H. Sheng, H. G. Sun, C. Coopmans, Y. Q. Chen, and G. W. Bohannan ,"A Physical exper- imental study of variable-order fractional integrator and differentiator", Eur. Phys. J. Spec. Top.,vol.193,no.1,pp.93-104 ,2011. [37] Li. Shujuan , D.H. Gouge, K. Walker, Al Fournier, Shaku Nair, M. Wierda, and J. Hurley, "The Zika Virus", University of Arizona Cooperative Extension, Arizona pest management center,2016. [38] D. Sierociuk, I. Podlubny, and I. Petras," Experimental evidence of variable-order behavior of ladders and nested ladders", IEEE Trans. Control Syst. Technol., vol. 21, no.2, pp.459-466, 2013. [39] W. Smit, and H. de Vries, "Rheological models containing fractional derivatives", Rheol Acta,vol.9,no.4,pp.525-534,1970. [40] H. G. Sun, W. Chen, H. Wei, and Y. Q. Chen, "A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems", Eur. Phys. J. Special Topics,vol.193,no.1,pp.185-192,2011. [41] N. H. Sweilam, S.M.AL-Mekhla?, \Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives", J.Adv. Res., vol.7, no.2, pp.271-283, 2015. [42] D. Tavares, R. Almeida, D. F. M. Torres, \Caputo derivatives of fractional variable order: numerical approximations". Commun. Nonlinear. Sci. Numer. Simul., vol.35, pp.69-87, 2016. [43] Yi. Xiao, Yicang Zhou, Sanyi Tang," Modeling disease spread in dispersal networks at two levels". Math Med Biol, vol.28, no.3,pp.22-244,2011. [44] M. Xu, J. Yang, D. Zhao and H. Zhao, \An image-enhancement method based on variable- order fractional differential operators", Bio-Medical Materials and Engineering, vol. 26, no.s1, pp.S1325-S1333, 2015. [45] Xu. Yufeng and He. Zhimin,"Existence and uniqueness results for Cauchy problem of variable- order fractional differential equations", J. Appl. Math. Comput vol.43, no.(1-2), pp.295-306, 2013.