Rheological Behavior of Carbon Nanotubes as an Additive on Lithium Grease
Loading...
Date
2013
Journal Title
Journal ISSN
Volume Title
Type
Article
Publisher
Hindawi Publishing Corporation
Series Info
Journal of Nanotechnology;Volume 2013, Article ID 279090, 4 pages
Scientific Journal Rankings
Abstract
The rheological behaviors of carbon nanotubes (CNTs) as an additive on lithium grease at different concentrations were examined under various settings of shear rate, shear stress, and apparent viscosity. The results indicated that the optimum content of the CNTs was 2%. These experimental investigations were evaluated with a Brookfield Programmable Rheometer DV-III ULTRA. The results indicated that the shear, stress and apparent viscosity increase with the increase of CNTs concentration. The microstructure of CNTs and lithium grease was examined by high resolution transmission electron microscope (HRTEM) and scanning electron microscope (SEM). The results indicated that the microscopic structure of the lithium grease presents a more regular and homogeneous network structure, with long fibers, which confirms the rheological stability.
Description
MSA Google Scholar
Keywords
carbon nanotubes, tribological behavior, lithium grease, lubricant additives, antiwear, friction coefficients
Citation
[1] F. Chinas-Castillo and H. A. Spikes, “The behavior of colloidal solid particles in Elastohydrodynamic contacts,” Tribology Transactions, vol. 43, no. 3, pp. 387–394, 2000. [2] A. V. Radulescu and I. Radulescu, “Rheological models for lithium and calcium greases,” Mechanika, vol. 59, no. 3, pp. 67–70, 2006. [3] K. Siik and J. Vuorinen, “The influence of shear thinning behavior on lubricating grease consistency and its effect on oil separation,” in Proceedings of the Annual Transactions of the Nordic Rheology Conference, S. L. Mason, Ed., vol. 13, pp. 247– 248, The Nordic Rheology Society, Tampere, Finland, June 2005.Battez, A. H., Rico, J. E. F., Arias, A. N., Rodriguez, J. L. V., Rodriguez, R. C., and Fernandez, J. M. D., 2006, “The Tribological Behaviour of ZnO Nanoparticles as an Additive to PAO6,” Wear, 261(3–4), pp. 256–263.10.1016/j.wear.2005.10.001 Google ScholarCrossref 2. Bakunin, V. N., Suslov, A. Y., Kuzmina, G. N., and Parenago, O. P., 2004, “Synthesis and Application of Inorganic Nanoparticles as Lubricant Components–A Review,” J. Nanopart. Res., 6(2), pp. 273–284.10.1023/B:NANO.0000034720.79452.e3 Google ScholarCrossref 3. Zhou, J. F., Wu, Z. S., Zhang, Z. J., Liu, W. M., and Xue, Q. J., 2000, “Tribological Behavior and Lubricating Mechanism of Cu Nanoparticles in Oil,” Tribol. Lett., 8(4), pp. 213–218.10.1023/A:1019151721801 Google ScholarCrossref 4. Qiu, S. Q., Zhou, Z. R., Dong, J. X., and Chen, G. X., 2001, “Preparation of Ni Nanoparticles and Evaluation of Their Tribological Performance as Potential Additives in Oils,” ASME J. Tribol., 123(3), pp. 441–443.10.1115/1.1286152 5. Tarasov, S., Kolubaev, A., Belyaev, S., Lerner, M., and Tepper, F., 2002, “Study of Friction Reduction by Nanocopper Additives to Motor Oil,” Wear, 252(1–2), pp. 63–69.10.1016/S0043-1648(01)00860-2 Google ScholarCrossref 6. Sun, L., Zhang, Z. J., Wu, Z. S., and Dang, H. X., 2004, “Synthesis and Characterization of DDP Coated Ag Nanoparticles,” Mater. Sci. Eng., A, 379(1–2), pp. 378–383.10.1016/j.msea.2004.03.002 Google ScholarCrossref 7. Liu, G., Li, X., Lu, N., and Fan, R., 2005, “Enhancing AW/EP Property of Lubricant Oil by Adding Nano Al/Sn Particles,” Tribol. Lett., 18(1), pp. 85–90.10.1007/s11249-004-1760-0 Google ScholarCrossref 8. Yu, H. L., Xu, Y., Shi, P. J., Xu, B. S., Wang, X. L., and Liu, Q., 2008, “Tribological Properties and Lubricating Mechanisms of Cu Nanoparticles in Lubricant,” Trans. Nonferrous Met. Soc. China, 18(3), pp. 636–641.10.1016/S1003-6326(08)60111-9 Google ScholarCrossref 9. Zhang, M., Wang, X. B., Liu, W. M., and Fu, X. S., 2009, “Performance and Anti-Wear Mechanism of Cu Nanoparticles as Lubricating Oil Additives,” Ind. Lubric. Tribol., 61(6), pp. 311–318.10.1108/00368790910988426 Google ScholarCrossref 10. Xue, Q. J., Liu, W. M., and Zhang, Z. J., 1997, “Friction and Wear Properties of a Surface-Modified TiO2 Nanoparticle as an Additive in Liquid Paraffin,” Wear, 213(1–2), pp. 29–32.10.1016/S0043-1648(97)00200-7 Google ScholarCrossref 11. Hu, Z. S., and Dong, J. X., 1998, “Study on Antiwear and Reducing Friction Additive of Nanometer Titanium Oxide,” Wear, 216(1), pp. 92–96.10.1016/S0043-1648(97)00252-4 Google ScholarCrossref 12. Hu, Z. S., Dong, J. X., and Chen, G. X., 1998, “Study on Antiwear and Reducing Friction Additive of Nanometer Ferric Oxide,” Tribol. Int., 31(7), pp. 355–360.10.1016/S0301-679X(98)00042-5 Google ScholarCrossref 13. Gao, Y. J., Chen, G. X., Oli, Y., Zhang, Z. J., and Xue, Q. J., 2002, “Study on Tribological Properties of Oleic Acid-Modified TiO2 Nanoparticle in Water,” Wear, 252(5–6), pp. 454–458.10.1016/S0043-1648(01)00891-2 Google ScholarCrossref 14. Ma, J. Q., and Bai, M. W., 2009, “Effect of ZrO2 Nanoparticles Additive on the Tribological Behavior of Multialkylated Cyclopentanes,” Tribol. Lett., 36(3), pp. 191–198.10.1007/s11249-009-9459-x Google ScholarCrossref 15. Gansheimer, J., and Holinski, R., 1973, “Molybdenum Disulfide in Oils and Greases Under Boundary Conditions,” ASME J. Tribol., 95(2), pp. 242–248.10.1115/1.3451783 16. Zhang, Z. J., Xue, Q. J., and Zhang, J., 1997, “Synthesis, Structure and Lubricating Properties of Dialkyldithiophosphate-Modified Mo–S Compound Nanoclusters,” Wear, 209(1–2), pp. 8–12.10.1016/S0043-1648(96)07288-2 Google ScholarCrossref 17. Chen, S. A., Liu, W. M., and Yu, L. G., 1998, “Preparation of DDP-coated PbS Nanoparticles and Investigation of the Antiwear Ability of the Prepared Nanoparticles as Additive in Liquid Paraffin,” Wear, 218(2), pp. 153–158.10.1016/S0043-1648(98)00220-8 Google ScholarCrossref 18. Chen, S., and Liu, W. M., 2001, “Characterization and Antiwear Ability of Non-Coated ZnS Nanoparticles and DDP-Coated ZnS Nanoparticles,” Mater. Res. Bull., 36(1–2), pp. 137–143.10.1016/S0025-5408(00)00477-3 Google ScholarCrossref 19. Kang, X. H., Wang, B., Zhu, L., and Zhu, H., 2008, “Synthesis and Tribological Property Study of Oleic Acid-Modified Copper Sulfide Nanoparticles,” Wear, 265(1–2), pp. 150–154.10.1016/j.wear.2007.09.009 Google ScholarCrossref 20. Zhang, Z. F., Liu, W. M., and Xue, Q. J., 1998, “Friction and Wear Behaviors of the Complexes of Rare Earth Hexadecylate as Grease Additive,” Wear, 215(1–2), pp. 40–45.10.1016/S0043-1648(97)00284-6 Google ScholarCrossref 21. Zhang, Z. F., Yu, L. G., Liu, W. M., and Xue, Q. J., 2001, “The Effect of LaF3 Nanocluster Modified With Succinimide on the Lubricating Performance of Liquid Paraffin for Steel-on-Steel System,” Tribol. Int., 34(2), pp. 83–88.10.1016/S0301-679X(00)00135-3 Google ScholarCrossref 22. Zhou, J. F., Wu, Z. S., Zhang, Z. J., Liu, W. M., and Dang, H. X., 2001, “Study on an Antiwear and Extreme Pressure Additive of Surface Coated LaF3 Nanoparticles in Liquid Paraffin,” Wear, 249(5–6), pp. 333–337.10.1016/S0043-1648(00)00547-0 Google ScholarCrossref 23. Wang, L. B., Zhang, M., Wang, X. B., and Liu, W. M., 2008, “The Preparation of CeF3 Nanocluster Capped With Oleic Acid by Extraction Method and Application to Lithium Grease,” Mater. Res. Bull., 43(8–9), pp. 2220–2227.10.1016/j.materresbull.2007.08.024 Google ScholarCrossref 24. Wang, L. B., Wang, B., Wang, X. B., and Liu, W. M., 2007, “Tribological Investigation of CaF2 Nanoparticles as Grease Additives,” Tribol. Int., 40(7), pp. 1179–1185.10.1016/j.triboint.2006.12.003 Google ScholarCrossref 25. Hu, Z. S., and Dong, J. X., 1998, “Study on Antiwear and Reducing Friction Additive of Nanometer Titanium Borate,” Wear, 216(1), pp. 87–91.10.1016/S0043-1648(97)00249-4 Google ScholarCrossref 26. Normand, V., Martin, J. M., Ponsonnet, L., and Inoue, K., 1998, “Micellar Calcium Borate as an Antiwear Addititve,” Tribol. Lett., 5, pp. 235–242.10.1023/A:1019129305504 Google ScholarCrossref 27. Hu, Z. S., Dong, J. X., and Chen, G. X., 1998, “Preparation and Tribological Properties of Nanometer SnO and Ferrous Borate as Lubricant Additives,” 1998 2nd China International Symposium on Tribology, Peking, China. 28. Dong, J. X., and Hu, Z. S., 1998, “A Study of the Anti-Wear and Friction-Reducing Properties of the Lubricant Additive, Nanometer Zinc Borate,” Tribol. Int., 31(5), pp. 219–223.10.1016/S0301-679X(98)00017-6 Google ScholarCrossref 29. Hu, Z. S., Dong, J. X., Chen, G. X., and He, J. Z., 2000, “Preparation and Tribological Properties of Nanoparticle Lanthanum Borate,” Wear, 243(1–2), pp. 43–47.10.1016/S0043-1648(00)00415-4 Google ScholarCrossref 30. Hu, Z. S., Shi, Y. G., Wang, L. G., Peng, Y., Chen, G. X., and Dong, J. X., 2001, “Study on Antiwear and Reducing Friction Additive of Nanometer Aluminum Borate,” Lubr. Eng., 57, pp. 23–27. 31. Hu, Z. S., Lai, R., Lou, F., Wang, L. G., Chen, Z. L., Chen, G. X., and Dong, J. X., 2002, “Preparation and Tribological Properties of Nanometer Magnesium Borate as Lubricating Oil Additive,” Wear, 252(5–6), pp. 370–374.10.1016/S0043-1648(01)00862-6 Google ScholarCrossref 32. Dong, J. X., Chen, G., and Qiu, S., 2000, “Wear and Friction Behaviour of CaCO3 Nanoparticles Used as Additives in Lubricating Oils,” Lubr. Sci., 12(2), pp. 205–212.10.1002/ls.3010120207 33. Xianbing, J., and Chen, Y., 2011, “Tribological Properties of CaCO3 Nanoparticles as an Additive in Lithium Grease,” Tribol. Lett., 41(1), pp. 113–119.10.1007/s11249-010-9688-z 34. Kobayashi, K., Hironaka, S., Tanaka, A., Umeda, K., Lijima, S., Yudasaka, M., Kasuya, D., and Suzuki, M., 2005, “Additives Effect of Carbon Nanohorn on Grease Lubrication Properties,” J. Jpn. Pet. Inst., 48(3), pp. 121–126.10.1627/jpi.48.121 Google ScholarCrossref 35. Joly-Pottuz, L., and Dassenoy, F., 2004, “Ultralow Friction and Wear Behavior of Ni/Y-Based Single Wall Carbon Nanotubes (SWNTs),” Tribol. Int., 37(11–12), pp. 1013–1018.10.1016/j.triboint.2004.07.019 Google ScholarCrossref 36. Yang, Y., Yamabe, T., Kim, B.-S., Kim, I.-S., and Enomoto, Y., 2011, “Lubricating Characteristic of Grease Composites with CNT Additive,” Tribol. Online, 6(5), pp. 247–250.10.2474/trol.6.247 Google ScholarCrossref