An Enhanced Deep Learning Approach for Breast Cancer Detection in Histopathology Images
Date
2023-03
Journal Title
Journal ISSN
Volume Title
Type
Article
Publisher
Springer
Series Info
The 3rd International Conference on Artificial Intelligence and Computer Vision (AICV2023), March 5–7, 2023;
Doi
Scientific Journal Rankings
Abstract
An Enhanced Deep Learning Approach for Breast Cancer Detection in Histopathology Images
Mahmoud Ouf, Yasser Abdul-Hamid & Ammar Mohammed
Conference paper
First Online: 01 March 2023
129 Accesses
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT,volume 164)
Abstract
Breast cancer is defined as abnormal cellular proliferation in the breast. The most common kind of cancer that affects the breast and causes mortality in women is invasive ductal carcinoma (IDC). As a result, early diagnosis and prognosis have become critical to maximize survival and minimize mortality. Mammograms, computerized tomography (CT) scans, and ultrasounds are among the breast cancer tests available. On the other hand, histopathology evaluation with a biopsy is regarded as one of the most trustworthy techniques for determining if suspicious lesions are malignant. This paper proposes an enhanced approach for classifying breast tumors using a proposed CNN model that we named (CancerNet). We evaluate the proposed model on a benchmark dataset containing 277,524 patches. Compared to several types of CNN-based models, our proposed model has achieved accuracy, Area Under Curve (AUC), precision, recall, and F1-score of 86%, 92%, 81%, 84%, and 83%, respectively, outperforming the previous work on the same benchmark.
Description
Keywords
Deep learning, Convolutional neural network, Depthwise separable network, Cancer classification, Invasive ductal carcinoma (IDC)