New dental implant selection criterion based on implant design
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | El-Anwar, Mohamed I | |
dc.contributor.author | Ibraheem, Eman M | |
dc.contributor.author | El-Zawahry, Mohamed M | |
dc.contributor.author | Zakaria Nassani, Mohammad | |
dc.contributor.author | ElGabry, Hisham | |
dc.date.accessioned | 2019-11-04T13:31:14Z | |
dc.date.available | 2019-11-04T13:31:14Z | |
dc.date.issued | 2017-04 | |
dc.description.abstract | Objective: A comparative study between threaded and plain dental implant designs was performed to find out a new criterion for dental implant selection. Materials and Methods: Several dental implant designs with a systematic increase in diameter and length were positioned in a cylindrical-shaped bone section and analyzed using finite element method. Four loading types were tested on different dental implant designs; tension of 50 N, compression of 100 N, bending of 20 N, and torque of 2 Nm, to derive design curves. Results: Better stress distribution on both spongy and cortical bone was noted with an increase in dental implant diameter and length. With the increase in dental implant side area, a stress reduction in the surrounding bones was observed, where threaded dental implants showed better behavior over the plain ones. Conclusions: Increasing value of ratio between dental implant side area and its cross-sectional area reduces stresses transferred to cortical and spongy bones. The use of implants with higher ratio of side area to cross-section area, especially with weak jaw bone, is recommended. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=19900191833&tip=sid&clean=0 | |
dc.identifier.citation | Chee WW, Nowzari H, Kaneko L. Esthetic replacement of the anterior tooth with an implant-supported restoration. J Calif Dent Assoc. 1997;25:860–5. [PubMed] [Google Scholar] 2. Priest G. Single-tooth implants and their role in preserving remaining teeth: A 10-year survival study. Int J Oral Maxillofac Implants. 1999;14:181–8. [PubMed] [Google Scholar] 3. Sakka S, Baroudi K, Nassani MZ. Factors associated with early and late failure of dental implants. J Investig Clin Dent. 2012;3:258–61. [PubMed] [Google Scholar] 4. Cicciu M, Bramanti E, Matacena G, Guglielmino E, Risitano G. FEM evaluation of cemented-retained versus screw-retained dental implant single-tooth crown prosthesis. Int J Clin Exp Med. 2014;7:817–25. [PMC free article] [PubMed] [Google Scholar] 5. Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NH. Implant surface roughness and bone healing: A systematic review. J Dent Res. 2006;85:496–500. [PubMed] [Google Scholar] 6. Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite element analysis. J Prosthet Dent. 2008;100:422–31. [PubMed] [Google Scholar] 7. Cicciù M, Cervino G, Bramanti E, Lauritano F, Lo Gudice G, Scappaticci L, et al. FEM analysis of mandibular prosthetic overdenture supported by dental implants: Evaluation of different retention methods. Comput Math Methods Med 2015. 2015:943839. [PMC free article] [PubMed] [Google Scholar] 8. Cicciù M, Risitano G, Maiorana C, Franceschini G. Parametric analysis of the strength in the “Toronto” osseous-prosthesis system. Minerva Stomatol. 2009;58:9–23. [PubMed] [Google Scholar] 9. Lauritano F, Runci M, Cervino G, Fiorillo L, Bramanti E, Cicciù M. Three-dimensional evaluation of different prosthesis retention systems using finite element analysis and the Von Mises stress test. Minerva Stomatol. 2016;65:353–67. [PubMed] [Google Scholar] 10. Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis – A two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol. 1998;24:80–8. [PubMed] [Google Scholar] 11. Gaetti-Jardim EC, Santiago-Junior JF, Goiato MC, Pellizer EP, Magro-Filho O, Jardim Junior EG. Dental implants in patients with osteoporosis: A clinical reality? J Craniofac Surg. 2011;22:1111–3. [PubMed] [Google Scholar] 12. El-Anwar MI, El-Zawahry MM. A three dimensional finite element study on dental implant design. J Genet Eng Biotechnol. 2011;9:77–82. [Google Scholar] 13. El-Zawahry MM, El-Anwar MI, Elragi A, Jandali R. Studying the influence of different implant designs subjected to various loading types on bone stress distribution. Egypt Med J Natl Res Cent. 2009;8:23–7. [Google Scholar] 14. El-Anwar MI, El-Zawahry MM, El-Mofty MS. Load transfers on dental implants and surrounding bones. Aust J Basic Appl Sci. 2012;6:551–60. [Google Scholar] 15. Cruz M, Wassall T, Toledo EM, Barra LP, Lemonge AC. Three-dimensional finite element stress analysis of a cuneiform-geometry implant. Int J Oral Maxillofac Implants. 2003;18:675–84. [PubMed] [Google Scholar] 16. El-Anwar MI, El-Mofty MS, Awad AH, El-Sheikh SA, El-Zawahry MM. The effect of using different crown and implant materials on bone stress distribution: A finite element study. Egypt J Oral Maxillofac Surg. 2014;5:58–64. [Google Scholar] 17. Geng JP, Xu DW, Tan KB, Liu GR. Finite element analysis of an osseointegrated stepped screw dental implant. J Oral Implantol. 2004;30:223–33. [PubMed] [Google Scholar] 18. Abdel Azim A, Zaki A, El-Anwar M. Single molar restoration: Wide implant versus two conventional. Dent Trib U K Ed. 2014;4:12–4. [Google Scholar] 19. Bozkaya D, Muftu S, Muftu A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent. 2004;92:523–30. [PubMed] [Google Scholar] 20. Himmlova L, Dostalova T, Kacovsky A, Konvickova S. Influence of implant length and diameter on stress distribution: A finite element analysis. J Prosthet Dent. 2004;91:20–5. [PubMed] [Google Scholar] 21. Tawil G, Aboujaoude N, Younan R. Influence of prosthetic parameters on the survival and complication rates of short implants. Int J Oral Maxillofac Implants. 2006;21:275–82. [PubMed] [Google Scholar] 22. Pierrisnard L, Renouard F, Renult P, Barquins M. Influence of implant length and bicortical anchorage on implant stress distribution. Clin Implant Dent Relat Res. 2003;5:254–62. [PubMed] [Google Scholar] 23. Murakami K, Yamamoto K, Sugiura T, Kawakami M, Kang Y, Tsutsumi S, et al. Effect of clenching on biomechanical response of human mandible and tempromandibular joint of traumatic force analyzed by finite element method. Med Oral Pathol Oral Cir Bucal. 2013;18:e473–8 | en_US |
dc.identifier.doi | https://doi.org/10.4103/1305-7456.208432 | |
dc.identifier.other | https://doi.org/10.4103/1305-7456.208432 | |
dc.identifier.uri | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502562/ | |
dc.language.iso | en_US | en_US |
dc.publisher | Dental Investigations Society | en_US |
dc.relation.ispartofseries | European journal of dentistry;11(2): 186–191. | |
dc.subject | University for Dental implant design | en_US |
dc.subject | finite element method | en_US |
dc.subject | dental implant selection | en_US |
dc.title | New dental implant selection criterion based on implant design | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: