Green's function for multilayer arbitrarily biased anisotropic structures - Application to phase shifters, transducers, and magnetization angle effect

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorElshafiey T.F.
dc.contributor.authorAberle J.T.
dc.contributor.otherIEEE
dc.contributor.otherEgypt; Electrical Engineering Department
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.otherEl-Dokki
dc.contributor.otherCairo
dc.contributor.otherEgypt; Electrical Engineering Department
dc.contributor.otherArizona State University
dc.contributor.otherTempe
dc.contributor.otherAZ 85287-7206
dc.contributor.otherUnited States; Military Technical College
dc.contributor.otherAir Defense College
dc.contributor.otherArab Academy for Science and Technology
dc.contributor.otherCairo
dc.contributor.otherEgypt; October University for Modern Sciences and Arts (MSA)
dc.contributor.otherCairo
dc.contributor.otherEgypt; Electrical Engineering Department
dc.contributor.otherEgypt; Arizona State University (ASU)
dc.contributor.otherTempe
dc.contributor.otherUnited States
dc.date.accessioned2020-01-25T19:58:36Z
dc.date.available2020-01-25T19:58:36Z
dc.date.issued2006
dc.descriptionScopus
dc.description.abstractThis paper presents the closed-form Green's function for an arbitrarily biased magnetically anisotropic slab. The Green's function formulated using the transmission matrix is compared with the previously published data for two special cases: the transversely and normally biased ferrite slab. An excellent agreement is achieved. Three microwave devices are investigated using one numerical model that utilizes the derived Green's function by changing the magnetization angle. In the normal magnetization case, the ferrite substrate supports the edge-mode isolators. In the transversal magnetization case, the same structure supports the phase shifters. In the longitudinal magnetization case, the same structure supports magnetic surface wave transducers. The propagation direction in the three cases is kept in the longitudinal direction. A good agreement in all cases with previously published results is achieved. Here, we show only our analysis and results for the phase shifters and transducers, since edge isolator analysis was presented by Elshafley et al. in 1996. In addition, the effect of the deviation of the magnetization direction from the assumed one is studied, and the improvement of the predicted results compared with experimental ones is shown. � 2006 IEEE.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=17366&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1109/TMTT.2005.862706
dc.identifier.issn189480
dc.identifier.otherhttps://doi.org/10.1109/TMTT.2005.862706
dc.identifier.urihttps://ieeexplore.ieee.org/abstract/document/1589473
dc.language.isoEnglishen_US
dc.relation.ispartofseriesIEEE Transactions on Microwave Theory and Techniques
dc.relation.ispartofseries54
dc.subjectGeneral Green's functionen_US
dc.subjectIntegral-equation analysisen_US
dc.subjectPlanar ferrite microwave componentsen_US
dc.subjectEdge-mode isolatorsen_US
dc.subjectGeneral Green's functionen_US
dc.subjectIntegral-equation analysisen_US
dc.subjectPlanar ferrite microwave componentsen_US
dc.subjectAnisotropyen_US
dc.subjectMagnetizationen_US
dc.subjectMicrowave devicesen_US
dc.subjectMultilayersen_US
dc.subjectPhase shiftersen_US
dc.subjectTransducersen_US
dc.subjectGreen's functionen_US
dc.titleGreen's function for multilayer arbitrarily biased anisotropic structures - Application to phase shifters, transducers, and magnetization angle effecten_US
dc.typeArticleen_US
dcterms.isReferencedByElshafley, T.F., Aberle, J.T., El-Sharawy, E.-B.A., Full wave analysis of edge-guided mode microstrip isolator (1996) IEEE MTT-S Int. Microwave Symp. Dig., 96, pp. 980-984. , Jun; Elshafley, T.F., Aberle, J.T., El-Sharawy, E.-B.A., Full wave analysis of edge-guided mode microstrip isolator (1996) IEEE Trans. Microw. Theory Tech., 44 (12), pp. 2661-2668. , Dec; El-Sharawy, E., Jackson, R.W., Coplanar waveguide and slot line on magnetic substrates: Analysis and experiment (1988) IEEE Trans. Microw. Theory Tech., 36 (6), pp. 1071-1079. , Jun; Pozar, D.M., Radiation and scattering characteristics of microstrip antennas on normally biased ferrite substrates (1992) IEEE Trans. Antennas Propag., 40 (9), pp. 1084-1092. , Sep; Elshafiey, T.F., Aberle, J.T., El-Sharawy, E.-B.A., Green's function formulation for multilayer normally biased ferrite structures using the transmission matrix approach (1996) IEEE AP-S Int. Symp. Dig., 96, pp. 330-334. , Jul; Young, J.L., Johnson, C.M., A compact recursive trans-impedance green's function for the inhomogeneous ferrite microwave circulator (2004) IEEE Trans. Microw. Theory Tech., 52 (7), pp. 1751-1759. , Jul; Kong, J.A., (1990) Electromagnetic Wave Theory, , New York: Wiley; Chew, W.C., (1990) Waves and Fields in Inhomegeneous Media, , New York: Van Nostrand; Li, L.W., Bennet, J.A., Dyson, P.L., The coefficient of scattering dyadic green's function in arbitrary multi-layered media (1990) 3rd Asia-Pacific Microw. Conf., , Tokyo, Japan, Sep; Lee, J.K., Kong, J.A., Dyadic Green's functions for layered anisotropic medium (1983) Electromagnetics, 3, pp. 111-130. , Apr; Ali, S.M., Habashy, T.M., Kong, J.A., Spetral domain dyadic green's functions in layered chiral media (1992) J. Opt, Soc. Amer. A, Opt. Image Sci., 9, pp. 413-423. , Mar; Tan, E.L., Tan, S.Y., Unbounded and scattered field representations of the dyadic green's functions for planar scarified bianisotropic media (2001) IEEE Trans. Antennas Propag., 49 (8), pp. 1218-1225. , Aug; Hsia, L.Y., Yang, H.Y., Alexopoulos, N.G., Basic properties of microstrip circuit elements on nonreciprocal substrate-suberstrate structures (1991) J. Electromagn. Waves Applicat., 5, pp. 465-476. , Mar; El-Sharawy, E., (1989) Full Wave Analysis of Printed Lines on Magnetic Substrates, , Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Massachusetts, Amherst, MA; Tyras, G., The permeability matrix for a ferrite medium magnetized at an arbitrary direction and its eigenvalues (1959) IRE Trans. Microw. Theory Tech., MTT-7 (1), pp. 176-177. , Jan; Adam, J.D., Davis, L.E., Dionne, G.F., Schloemann, E.F., Stizer, S.N., Ferrite devices and materials (2002) IEEE Trans. Microw. Theory Tech., 50 (3), pp. 721-737. , Mar; Sorensen, R.K., Iskander, M.F., Lee, J.J., Low-cost nonplanar microstrip-line ferrite phase shifter utilizing circular polarization (2004) IEEE Microw. Wireless Compon. Lett., 14 (1), pp. 25-27. , Jan; How, H., Vittoria, C., Microwave phase shifter utilizing nonreciprocal wave propagation (2004) IEEE Trans. Microw. Theory Tech., 52 (8), pp. 1813-1819. , Aug; Itoh, T., Spectral domain immittance approach for dispersion characteristics of generalized printed transmission lines (1980) IEEE Trans. Microw. Theory Tech., MTT-28 (7), pp. 733-736. , Jul; Harrington, R.F., (1968) Field Computation by Moment Methods, , Melbourne, FL: Krieger; Koza, C.J., (1991) Planar Structures Using Oppositely-magnetized Ferrite Layers for Broadband, High Nonreciprocity Phase Shifters, , M.S. thesis, Dept. Elect. Eng., Arizona State Univ., Tempe, AZ; Parekh, J., W., C.K., S., T.H., Propagation characteristics of magnetostatic waves (1985) Circuits Syst. Signal Process., 4, pp. 9-39. , Jan; Riches, R.E., Brennan, P., Brigginshaw, P.M., Deeley, S.M., Microstrip ferrite devices using surface field effects for microwave integrated circuits (1970) IEEE Trans. Magn., MAG-6 (9), pp. 670-673. , Sep
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: