Adaptive blind equalization technique to enhance the Constant Modulus Algorithm performance

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorNassar A.M.
dc.contributor.authorEl. Nahal W.
dc.contributor.otherElectronics and Communication Dept.
dc.contributor.otherFaculty of Engineering
dc.contributor.otherCairo University
dc.contributor.otherGiza
dc.contributor.otherEgypt; Communication Dept.
dc.contributor.otherMSA University
dc.contributor.otherEgypt
dc.date.accessioned2020-01-25T19:58:33Z
dc.date.available2020-01-25T19:58:33Z
dc.date.issued2010
dc.descriptionScopus
dc.description.abstractRecently blind equalizers have a wide range of research interest since they do not require training sequence and extra bandwidth, but the main weaknesses of these approaches are their high computational complexity and slow adaptation, so different algorithms are presented to avoid this nature. This paper introduces a new blind equalization technique, the Exponentially Weighted Step-size Recursive Least Squares Constant Modulus Algorithm (EXP-RLS-CMA), based upon the combination between the Exponentially Weighted Step-size Recursive Least Squares (EXP-RLS) algorithm and the Constant Modulus Algorithm (CMA), by providing several assumptions to obtain faster convergence rate to an optimal delay where the Mean Squared Error (MSE) is minimum, and so this selected algorithm can be implemented in digital system to improve the receiver performance. Simulations are presented to show the excellence of this technique, and the main parameters of concern to evaluate the performance are, the rate of convergence, the mean square error (MSE), and the average error versus different signal-to-noise ratios. � 2011 IEEE.en_US
dc.identifier.doihttps://doi.org/10.1109/ICENCO.2010.5720442
dc.identifier.isbn9.78E+12
dc.identifier.otherhttps://doi.org/10.1109/ICENCO.2010.5720442
dc.identifier.urihttps://ieeexplore.ieee.org/document/5720442
dc.language.isoEnglishen_US
dc.publisherIEEE Computer Societyen_US
dc.relation.ispartofseriesICENCO'2010 - 2010 International Computer Engineering Conference: Expanding Information Society Frontiers
dc.subjectBlind equalizationen_US
dc.subjectChannel equalizationen_US
dc.subjectConstant Modulus Algorithm (CMA)en_US
dc.subjectExponentially Weighted Step-size Recursive Least Squares (EXP-RLS) algorithmen_US
dc.subjectRecursive least squared (RLS) algorithmen_US
dc.subjectErrorsen_US
dc.subjectMean square erroren_US
dc.subjectSignal to noise ratioen_US
dc.subjectAdaptive blind equalizationen_US
dc.subjectChannel equalizationen_US
dc.subjectConstant modulus algorithmsen_US
dc.subjectEqualization techniquesen_US
dc.subjectRate of convergenceen_US
dc.subjectReceiver performanceen_US
dc.subjectRecursive least square (RLS)en_US
dc.subjectResearch interestsen_US
dc.subjectBlind equalizationen_US
dc.titleAdaptive blind equalization technique to enhance the Constant Modulus Algorithm performanceen_US
dc.typeConference Paperen_US
dcterms.isReferencedByGodard, D.N., Self-recovering equalization and carrier tracking in a two-dimensional data communication system (1980) IEEE Transactions on Communications, COM-28, pp. 1867-1875; Giannakis, G., Halford, S., Blind fractionally spaced equalization of noisy FIR channels: Direct and adaptive solutions (1997) IEEE Trans. Signal Processing, 45, pp. 2277-2292. , Sept; Gesbert, D., Duhamel, P., Mayrargue, S., On-line blind multichannel equalization based on mutually referenced filters (1997) IEEE Trans. Signal Processing, 45, pp. 2307-2317. , Sept; Proakis, J.G., (2001) Digital Communications, , McGraw-Hill Companies, Inc., International Edition; Haykin, S., (2002) Adaptive Filter Theory, , 4th ed. NJ: Pentice-Hall; Li, Y., Global convergence of fractionally spaced godard (cma) adaptive equalizers (1996) IEEE Transactions on Signal Processing, 44 (4), pp. 818-826; Proakis, J.G., Manokis, D.G., (1989) Introduction to Digital Signal Processing, , Macmillan Publishing; Zhi, D., Ye, L., (2001) Blind Equalization and Identification, , Marcel Dekker; Gooch, R.P., Lundell, J.D., The CM array: An adaptive beamformer for constant modulus signals (1986) Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., pp. 2523-2526; Shynk, J.J., Steady-state analysis of the multistage constant modulus array (1996) IEEE Transactions on Signal Processing, 44 (4), pp. 948-962. , PII S1053587X96027892; Cioffi, J.M., Kailath, T., Fast RLS transversal filters for adaptive filtering (1984) IEEE Trans. on ASSP, 32 (2). , Apr; Ljung, L., Soderstrom, T., (1983) Theory and Practice of Recursive Identification, , MIT Press, Cambridge Chapter 2; Furukawa, H., Kamio, Y., Sasaoka, H., Cochannel interference reduction and path-diversity reception technique using CMA adaptive array antenna in digital land mobile communications (2001) IEEE Transactions on Vehicular Technology, 50 (2), pp. 605-616. , DOI 10.1109/25.923072, PII S0018954501019326; Chen, Y., Le-Ngoc, T., Champagne, B., Xu, C., Recursive least squares constant modulus algorithm for blind adaptive array (2004) IEEE Trans. Signal Processing, 52 (5), pp. 1452-1456. , May; Pickholtz, R., Elbarbary, K., The recursive constant modulus algorithm: A new approach for real-time array processing (1993) Proc. 27th Asilomar Conf. Signals, Syst. Computers, pp. 627-632. , Nov. 1-3; Gooch Richard, Lundell John, CM ARRAY: AN ADAPTIVE BEAMFORMER FOR CONSTANT MODULUS SIGNALS. (1986) ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, pp. 2523-2526; Chen, Y.X., He, Z.Y., Ng, T.S., Kwok, C.P.K., RLS adaptive blind beamforming algorithm for cyclostationary signals (1999) Electron. Lett., 35, pp. 1136-1138. , July; Chen, Y., Le-Ngoc, T., Champagne, B., Xu, C., Recursive least squares constant modulus algorithm for blind adaptive array (2004) IEEE Trans. Signal Processing, 52 (5), pp. 1452-1456. , May; Chen, Y.X., He, Z.Y., Ng, T.S., Kwok, C.P.K., RLS adaptive blind beamforming algorithm for cyclostationary signals (1999) Electron. Lett., 35, pp. 1136-1138. , July; Chen, Y.X., Le-Ngoc, T., Champagne, B., Xu, C., Recursive least squares constant modulus algorithm for blind adaptive array (2004) IEEE Trans. Signal Processing, 52, pp. 1452-1456. , May; Makino, S., Kaneda, Y., ES-RLS (exponentially weighted step-size RLS) algorithm based on the statistics of a room impulse response (1992) Proc. Autumn Meet. Acoust. Sot. Jpn., pp. 547-548. , Oct. (in Japanese); Makino, S., Kaneda, Y., A new RLS algorithm based on the variation characteristics of A room impulse response (1994) IEEE Trans. Speech and Audio; Makino, S., Kaneda, Y., Koizumi, N., Exponentially weighted step-size NLMS adaptive filter based on the statistics of a room impulse response (1993) IEEE Trans. Speech and Audio, 1, pp. 101-108. , Jan; Makino, S., Kaneda, Y., Exponentially weighted step-size projection algorithm for acoustic echo cantellers (1992) Trans. IEICE Japan, E75-A, pp. 1500-1508. , Nov; Sayed, A.H., Kailath, T., A state-space approach to adaptive RLS filtering (1994) IEEE Signal Processing Mag., 11, pp. 18-60. , July; Haykin, S., Adaptive tracking of linear time-variant systems by extended RLS algorithms (1997) IEEE Transactions on Signal Processing, 45 (5). , May; Van Vaerenbergh, S., Via, J., Santamar�a, I., A sliding window kernel RLS algorithm and its application to nonlinear channel identification (2006) Proc. International Conference on Accoustics, Speech and Signal Processing 2006, pp. 789-792. , May; Liu, W., Principe, J.C., (2007) Extended Recursive Least Squares in RKHS; Sayed, A., (2003) Fundamentals of Adaptive Filtering, , New York, USA: Wiley; Van Vaerenbergh, S., Nonlinear system identification using a NewSliding-window kernel RLS algorithm (2007) Journal of Communications, 2 (3). , May; Zeng, H.H., Tong, L., Richard Johnson Jr., C., Relationships between the constant modulus and wiener receivers (1998) IEEE Transactions on Information Theory, 44 (4), pp. 1523-1538. , PII S0018944898034610
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: