Adaptive blind equalization technique to enhance the Constant Modulus Algorithm performance
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Nassar A.M. | |
dc.contributor.author | El. Nahal W. | |
dc.contributor.other | Electronics and Communication Dept. | |
dc.contributor.other | Faculty of Engineering | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Communication Dept. | |
dc.contributor.other | MSA University | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-25T19:58:33Z | |
dc.date.available | 2020-01-25T19:58:33Z | |
dc.date.issued | 2010 | |
dc.description | Scopus | |
dc.description.abstract | Recently blind equalizers have a wide range of research interest since they do not require training sequence and extra bandwidth, but the main weaknesses of these approaches are their high computational complexity and slow adaptation, so different algorithms are presented to avoid this nature. This paper introduces a new blind equalization technique, the Exponentially Weighted Step-size Recursive Least Squares Constant Modulus Algorithm (EXP-RLS-CMA), based upon the combination between the Exponentially Weighted Step-size Recursive Least Squares (EXP-RLS) algorithm and the Constant Modulus Algorithm (CMA), by providing several assumptions to obtain faster convergence rate to an optimal delay where the Mean Squared Error (MSE) is minimum, and so this selected algorithm can be implemented in digital system to improve the receiver performance. Simulations are presented to show the excellence of this technique, and the main parameters of concern to evaluate the performance are, the rate of convergence, the mean square error (MSE), and the average error versus different signal-to-noise ratios. � 2011 IEEE. | en_US |
dc.identifier.doi | https://doi.org/10.1109/ICENCO.2010.5720442 | |
dc.identifier.isbn | 9.78E+12 | |
dc.identifier.other | https://doi.org/10.1109/ICENCO.2010.5720442 | |
dc.identifier.uri | https://ieeexplore.ieee.org/document/5720442 | |
dc.language.iso | English | en_US |
dc.publisher | IEEE Computer Society | en_US |
dc.relation.ispartofseries | ICENCO'2010 - 2010 International Computer Engineering Conference: Expanding Information Society Frontiers | |
dc.subject | Blind equalization | en_US |
dc.subject | Channel equalization | en_US |
dc.subject | Constant Modulus Algorithm (CMA) | en_US |
dc.subject | Exponentially Weighted Step-size Recursive Least Squares (EXP-RLS) algorithm | en_US |
dc.subject | Recursive least squared (RLS) algorithm | en_US |
dc.subject | Errors | en_US |
dc.subject | Mean square error | en_US |
dc.subject | Signal to noise ratio | en_US |
dc.subject | Adaptive blind equalization | en_US |
dc.subject | Channel equalization | en_US |
dc.subject | Constant modulus algorithms | en_US |
dc.subject | Equalization techniques | en_US |
dc.subject | Rate of convergence | en_US |
dc.subject | Receiver performance | en_US |
dc.subject | Recursive least square (RLS) | en_US |
dc.subject | Research interests | en_US |
dc.subject | Blind equalization | en_US |
dc.title | Adaptive blind equalization technique to enhance the Constant Modulus Algorithm performance | en_US |
dc.type | Conference Paper | en_US |
dcterms.isReferencedBy | Godard, D.N., Self-recovering equalization and carrier tracking in a two-dimensional data communication system (1980) IEEE Transactions on Communications, COM-28, pp. 1867-1875; Giannakis, G., Halford, S., Blind fractionally spaced equalization of noisy FIR channels: Direct and adaptive solutions (1997) IEEE Trans. Signal Processing, 45, pp. 2277-2292. , Sept; Gesbert, D., Duhamel, P., Mayrargue, S., On-line blind multichannel equalization based on mutually referenced filters (1997) IEEE Trans. Signal Processing, 45, pp. 2307-2317. , Sept; Proakis, J.G., (2001) Digital Communications, , McGraw-Hill Companies, Inc., International Edition; Haykin, S., (2002) Adaptive Filter Theory, , 4th ed. NJ: Pentice-Hall; Li, Y., Global convergence of fractionally spaced godard (cma) adaptive equalizers (1996) IEEE Transactions on Signal Processing, 44 (4), pp. 818-826; Proakis, J.G., Manokis, D.G., (1989) Introduction to Digital Signal Processing, , Macmillan Publishing; Zhi, D., Ye, L., (2001) Blind Equalization and Identification, , Marcel Dekker; Gooch, R.P., Lundell, J.D., The CM array: An adaptive beamformer for constant modulus signals (1986) Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., pp. 2523-2526; Shynk, J.J., Steady-state analysis of the multistage constant modulus array (1996) IEEE Transactions on Signal Processing, 44 (4), pp. 948-962. , PII S1053587X96027892; Cioffi, J.M., Kailath, T., Fast RLS transversal filters for adaptive filtering (1984) IEEE Trans. on ASSP, 32 (2). , Apr; Ljung, L., Soderstrom, T., (1983) Theory and Practice of Recursive Identification, , MIT Press, Cambridge Chapter 2; Furukawa, H., Kamio, Y., Sasaoka, H., Cochannel interference reduction and path-diversity reception technique using CMA adaptive array antenna in digital land mobile communications (2001) IEEE Transactions on Vehicular Technology, 50 (2), pp. 605-616. , DOI 10.1109/25.923072, PII S0018954501019326; Chen, Y., Le-Ngoc, T., Champagne, B., Xu, C., Recursive least squares constant modulus algorithm for blind adaptive array (2004) IEEE Trans. Signal Processing, 52 (5), pp. 1452-1456. , May; Pickholtz, R., Elbarbary, K., The recursive constant modulus algorithm: A new approach for real-time array processing (1993) Proc. 27th Asilomar Conf. Signals, Syst. Computers, pp. 627-632. , Nov. 1-3; Gooch Richard, Lundell John, CM ARRAY: AN ADAPTIVE BEAMFORMER FOR CONSTANT MODULUS SIGNALS. (1986) ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, pp. 2523-2526; Chen, Y.X., He, Z.Y., Ng, T.S., Kwok, C.P.K., RLS adaptive blind beamforming algorithm for cyclostationary signals (1999) Electron. Lett., 35, pp. 1136-1138. , July; Chen, Y., Le-Ngoc, T., Champagne, B., Xu, C., Recursive least squares constant modulus algorithm for blind adaptive array (2004) IEEE Trans. Signal Processing, 52 (5), pp. 1452-1456. , May; Chen, Y.X., He, Z.Y., Ng, T.S., Kwok, C.P.K., RLS adaptive blind beamforming algorithm for cyclostationary signals (1999) Electron. Lett., 35, pp. 1136-1138. , July; Chen, Y.X., Le-Ngoc, T., Champagne, B., Xu, C., Recursive least squares constant modulus algorithm for blind adaptive array (2004) IEEE Trans. Signal Processing, 52, pp. 1452-1456. , May; Makino, S., Kaneda, Y., ES-RLS (exponentially weighted step-size RLS) algorithm based on the statistics of a room impulse response (1992) Proc. Autumn Meet. Acoust. Sot. Jpn., pp. 547-548. , Oct. (in Japanese); Makino, S., Kaneda, Y., A new RLS algorithm based on the variation characteristics of A room impulse response (1994) IEEE Trans. Speech and Audio; Makino, S., Kaneda, Y., Koizumi, N., Exponentially weighted step-size NLMS adaptive filter based on the statistics of a room impulse response (1993) IEEE Trans. Speech and Audio, 1, pp. 101-108. , Jan; Makino, S., Kaneda, Y., Exponentially weighted step-size projection algorithm for acoustic echo cantellers (1992) Trans. IEICE Japan, E75-A, pp. 1500-1508. , Nov; Sayed, A.H., Kailath, T., A state-space approach to adaptive RLS filtering (1994) IEEE Signal Processing Mag., 11, pp. 18-60. , July; Haykin, S., Adaptive tracking of linear time-variant systems by extended RLS algorithms (1997) IEEE Transactions on Signal Processing, 45 (5). , May; Van Vaerenbergh, S., Via, J., Santamar�a, I., A sliding window kernel RLS algorithm and its application to nonlinear channel identification (2006) Proc. International Conference on Accoustics, Speech and Signal Processing 2006, pp. 789-792. , May; Liu, W., Principe, J.C., (2007) Extended Recursive Least Squares in RKHS; Sayed, A., (2003) Fundamentals of Adaptive Filtering, , New York, USA: Wiley; Van Vaerenbergh, S., Nonlinear system identification using a NewSliding-window kernel RLS algorithm (2007) Journal of Communications, 2 (3). , May; Zeng, H.H., Tong, L., Richard Johnson Jr., C., Relationships between the constant modulus and wiener receivers (1998) IEEE Transactions on Information Theory, 44 (4), pp. 1523-1538. , PII S0018944898034610 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: