Spinning and Spinning Deviation Equations for Special Types of Gauge Theories of Gravity

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorKahil M.E.
dc.contributor.otherModern Sciences and Arts University
dc.contributor.otherGiza
dc.contributor.otherEgypt; Egyptian Relativity Group
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:03Z
dc.date.available2020-01-09T20:41:03Z
dc.date.issued2018
dc.descriptionScopus
dc.description.abstractThe problem of spinning and spin deviation equations for particles as defined by their microscopic effect has led many authors to revisit non-Riemannian geometry describing torsion and its relation with the spin of elementary particles. We obtain a new method for detecting the existence of torsion by deriving the equations of spin deviations in different classes of non-Riemannian geometries, using a modified Baz anski method. We find that the translational and rotational gauge potentials regulate the spin deviation equation in the framework of the Poincare gauge field theory of gravity. 2018, Pleiades Publishing, Ltd.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=17600155002&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1134/S0202289318010103
dc.identifier.issn2022893
dc.identifier.otherhttps://doi.org/10.1134/S0202289318010103
dc.identifier.urihttps://arxiv.org/abs/1701.04136
dc.language.isoEnglishen_US
dc.publisherIEEE Computer Society
dc.publisherPleiades Publishingen_US
dc.relation.ispartofseriesGravitation and Cosmology
dc.relation.ispartofseries24
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.titleSpinning and Spinning Deviation Equations for Special Types of Gauge Theories of Gravityen_US
dc.typeArticleen_US
dcterms.isReferencedByPapapetrou, A., (1951) Proc. Roy. Soc. London A, 209, p. 248; Corinaldesi, E., Papapetrou, A., (1951) Proc. Roy. Soc. London A, 209, p. 259; Utyiama, R., (1956) Phys. Rev, 101, p. 1597; Kibble, T.W., (1960) J. Math Phys, 2, p. 212; Hehl, F.W., Kerlik, G.D., Nester, J.M., (1976) Rev Mod Phys, 48, p. 393; (1979) F. W. Hehl, Proc. 6th Course of Int. School of Cosmology and Gravitation on �Spin, Torsion and Supergravity�, eds. P. G, 1. , Bergamann and V. de Sabatta, held at Erice; Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne�eman, Y., (1995) Phys. Rep, p. 1; Ali, S.A., Carfao, C., S. Capozziello, and Ch Corda; Hayashi, K., Shirafuji, T., (1979) Phys. Rev. D, 19, p. 3524; Collins, P., Martin, A., Squires, E., (1989) Particle Physics and Cosmology, , JohnWiley and Sons, New York; Hammond, R., (2002) Rep. Prog. Phys, 65, p. 599; Acros, H.I., Pereira, J.G., (2004) Int. J. Mod. Phys. D, 13, p. 2193; Mao, Y., Tegmark, M., Guth, A., Cabi, S., (2007) Phys. Rev. D, 76, p. 104029; Hehl, F.W., (1971) Phys. Lett. A, 36, p. 225; Hojman, S., (1978) Phys. Rev. D, 18, p. 2741; Yasskin, P.H., Stoeger, W.R., (1980) Phys. Rev. D, 21, p. 2081; Ba�anski, S.L., (1989) J. Math. Phys, 30, p. 1018; Kahil, M.E., (2006) J. Math. Phys, 47, p. 52501; Kahil, M.E., (2015) Odessa Astron. Publications, 28-2, p. 126; Mohseni, M., (2010) Gen. Rel. Grav, 42, p. 2477; Acros, H.I., Andrade, V.C., Pereira, J.G., grqc/ 0403074; Hojman, S., Rosenbaum, M., Ryan, M.P., (1979) Phys. Rev. D, 19, p. 430; Hehl, F.W., Obukhov, Y.N., Puetzfeld, D., (2013) Phys Lett. A, 377, p. 1775; Yisi, D., Jiang, Y., (1999) Gen. Rel. Grav, 31, p. 99; Cianfani, F., Montani, G., Scopelliiti, V., ; Fabbri, L., Vignolo, S., (2012) Annalen Phys, 524, p. 826; Wanas, M.I., Melek, M., Kahil, M.E., (2000) Grav. Cosmol, 6, p. 319; Wanas, M.I., Kahil, M.E., (1999) Gen.Rel.Grav, 31, p. 1921; (2003) Proc. MG IX, part B, , M. I. Wanas, M. Melek, and M. E. Kahil, p. 1100 (eds. VGurzadyan World Scientific); gr-qc/0306086; Wanas, M.I., Kahil, M.E., Kamal, M.M., (2016) Grav. Cosmol, 22, p. 345; Puetzfeld, D., Obukhov, Y.N.,
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
1701.04136.pdf
Size:
121.85 KB
Format:
Adobe Portable Document Format
Description: