Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Mohamed A.W. | |
dc.contributor.author | Hadi A.A. | |
dc.contributor.author | Mohamed A.K. | |
dc.contributor.other | Operations Research Department | |
dc.contributor.other | Faculty of Graduate Studies for Statistical�Research | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Giza | |
dc.contributor.other | 12613 | |
dc.contributor.other | Egypt; Wireless Intelligent Networks Center (WINC) | |
dc.contributor.other | School of Engineering and Applied Sciences | |
dc.contributor.other | Nile University | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; College of Computing and Information Technology | |
dc.contributor.other | King Abdulaziz University | |
dc.contributor.other | P. O. Box 80200 | |
dc.contributor.other | Jeddah | |
dc.contributor.other | 21589 | |
dc.contributor.other | Saudi Arabia; Department of Computer Science | |
dc.contributor.other | Faculty of Computer Science | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | 6th October City | |
dc.contributor.other | Giza | |
dc.contributor.other | 12451 | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:44Z | |
dc.date.available | 2020-01-09T20:40:44Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | This paper proposes a novel nature-inspired algorithm called Gaining Sharing Knowledge based Algorithm (GSK) for solving optimization problems over continuous space. The GSK algorithm mimics the process of gaining and sharing knowledge during the human life span. It is based on two vital stages, junior gaining and sharing phase and senior gaining and sharing phase. The present work mathematically models these two phases to achieve the process of optimization. In order to verify and analyze the performance of GSK, numerical experiments on a set of 30 test problems from the CEC2017 benchmark for 10, 30, 50 and 100 dimensions. Besides, the GSK algorithm has been applied to solve the set of real world optimization problems proposed for the IEEE-CEC2011 evolutionary algorithm competition. A comparison with 10 state-of-the-art and recent metaheuristic algorithms are executed. Experimental results indicate that in terms of robustness, convergence and quality of the solution obtained, GSK is significantly better than, or at least comparable to state-of-the-art approaches with outstanding performance in solving optimization problems especially with high dimensions. � 2019, Springer-Verlag GmbH Germany, part of Springer Nature. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=19700177336&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1007/s13042-019-01053-x | |
dc.identifier.doi | PubMed ID : | |
dc.identifier.issn | 18688071 | |
dc.identifier.other | https://doi.org/10.1007/s13042-019-01053-x | |
dc.identifier.other | PubMed ID : | |
dc.identifier.uri | https://t.ly/j6rpJ | |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartofseries | International Journal of Machine Learning and Cybernetics | |
dc.subject | Evolutionary computation | en_US |
dc.subject | Global optimization | en_US |
dc.subject | Meta-heuristics | en_US |
dc.subject | Nature-inspired algorithms | en_US |
dc.subject | Population-based algorithm | en_US |
dc.subject | Benchmarking | en_US |
dc.subject | Biomimetics | en_US |
dc.subject | Global optimization | en_US |
dc.subject | Knowledge based systems | en_US |
dc.subject | Meta heuristic algorithm | en_US |
dc.subject | Meta heuristics | en_US |
dc.subject | Nature inspired algorithms | en_US |
dc.subject | Numerical experiments | en_US |
dc.subject | Optimization problems | en_US |
dc.subject | Population-based algorithm | en_US |
dc.subject | Real-world optimization | en_US |
dc.subject | State-of-the-art approach | en_US |
dc.subject | Evolutionary algorithms | en_US |
dc.title | Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Talbi, E.-G., (2009) Metaheuristics: from design to implementation, , Wiley, New York; Glover, F., Future paths for integer programming and links to artificial intelligence (1986) Comput Oper Res, 13 (5), pp. 533-549; Blum, C., Roli, A., Metaheuristics in combinatorial optimization (2003) ACM Comput Surv, 35 (3), pp. 268-308; Fogel, L.J., Owens, A.J., Walsh, M.J., (1966) Artificial Intelligence through Simulated Evolution, , Wiley; Rechenberg, I., Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der biologischen evolution (1994) Frommann-Holzbog, Stuttgart, , 1973; Holland, J., Adaptation in natural and artificial systems: An introductory analysis with application to biology (1975) Control and Artificial Intelligence, , https://ci.nii.ac.jp/naid/10019844035/en/, University of Michigan Press; Hillis, W.D., Co-evolving parasites improve simulated evolution as an optimization procedure (1990) Phys D Nonlinear Phenom, 42 (1-3), pp. 228-234; Reynolds, R.G., An introduction to cultural algorithms (1994) Proceedings of the 3Rd Annual Conference on Evolutionary Programming, pp. 131-139. , World Scienfific Publishing; Koza, J., Genetic programming as a means for programming computers by natural selection (1994) Stat Comput, 4 (2), pp. 87-112; M�hlenbein, H., Paa�, G., (1996) From recombination of genes to the estimation of distributions I. Binary parameters, pp. 178-187. , Springer, Berlin; Storn, R., Price, K., Differential evolution�a simple and efficient heuristic for global optimization over continuous spaces (1997) J Glob Optim, 11 (4), pp. 341-359; Ryan, C., Collins, J., Neill, M.O., (1998) Grammatical evolution: evolving programs for an arbitrary language, pp. 83-96. , Springer, Berlin; Ferreira, C., Gene expression programming in problem solving (2002) Soft computing and industry, pp. 635-653. , (,),. In:,., Springer London; Han, K.-H., Kim, J.-H., Quantum-inspired evolutionary algorithm for a class of combinatorial optimization (2002) IEEE Trans Evol Comput, 6 (6), pp. 580-593; Atashpaz-Gargari, E., Lucas, C., Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition (2007) IEEE Congr Evol Comput, 2007, pp. 4661-4667; Civicioglu, P., Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm (2012) Comput Geosci, 46, pp. 229-247; Civicioglu, P., Backtracking search optimization algorithm for numerical optimization problems (2013) Appl Math Comput, 219 (15), pp. 8121-8144; Salimi, H., Stochastic fractal search: a powerful metaheuristic algorithm (2015) Knowl Based Syst, 75, pp. 1-18; Dhivyaprabha, T.T., Subashini, P., Krishnaveni, M., Synergistic fibroblast optimization: a novel nature-inspired computing algorithm (2018) Front Inf Technol Electron Eng, 19 (7), pp. 815-833; Moscato, P., (1989) On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts-Towards Memetic Algorithms; Dorigo, M., Maniezzo, V., Colorni, A., Ant system: optimization by a colony of cooperating agents (1996) IEEE Trans Syst Man Cybern Part B, 26 (1), pp. 29-41; Eberhart, R., Kennedy, J., A new optimizer using particle swarm theory (1995) MHS�95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43; Kennedy, J., Eberhart, R., Particle swarm optimization (1995) Proceedings of IEEE International Conference on Neural Networks, 4, pp. 1942-1948. , https://doi.org/10.1109/ICNN.1995.488968; Kennedy, J., Eberhart, R.C., A discrete binary version of the particle swarm algorithm (1997) 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, 5, pp. 4104-4108; de Castro, L.N., Timmis, J., (2002) Artificial immune systems: a new computational approach, , Springer-Verlag, London, UK; de Castro, L.N., von Zuben, F.J., (1999) Artificial immune systems: Part I -basic theory and applications, , . School of Computing and Electrical Engineering, State University of Campinas, Brazil, No. DCA-RT 01/99; Zelinka, I., (2004) SOMA�self-organizing migrating algorithm, pp. 167-217. , Springer, Berlin; Abbass, H.A., (2001) MBO: Marriage in Honey Bees optimization�a Haplometrosis Polygynous Swarming Approach; Li, X., An optimizing method based on autonomous animats: Fish-swarm algorithm (2002) Syst Eng Pract, 22 (11), pp. 32-38; Passino, K.M., Biomimicry of bacterial foraging for distributed optimization and control (2002) IEEE Control Syst., 22 (3), pp. 52-67; Gordon, N., Wagner, I.A., Bruckstein, A.M., Discrete Bee dance algorithm for pattern formation on a grid (2003) IEEE/WIC Int. Conf. Intell. Agent Technol. IAT 2003, pp. 545-549; Lu?i?, P., Teodorovi?, D., Computing with bees: attacking complex transportation engineering problems (2003) Int J Artif Intell Tools, 12 (3), pp. 375-394; Jung, S.H., Queen-bee evolution for genetic algorithms (2003) Electron Lett, 39 (6), pp. 575-576; Eusuff, M.M., Lansey, K.E., Optimization of water distribution network design using the shuffled frog leaping algorithm (2003) J Water Resour Plan Manag, 129 (3), pp. 210-225; Wedde, H.F., Farooq, M., Zhang, Y., (2004) BeeHive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior, pp. 83-94. , Springer, Berlin; Teodorovic, D., Dell�Orco, M., Bee colony optimization�a cooperative learning approach to complex transportation problems (2005) Proceedings of the 16Th Mini-Euro Conference on Advanced OR and AI Methods in Transportation, pp. 51-60. , Poznan; Drias, H., Sadeg, S., Yahi, S., (2005) Cooperative bees swarm for solving the maximum weighted satisfiability problem, pp. 318-325. , Springer, Berlin; Krishnanand, K.N., Ghose, D., Detection of multiple source locations using a glowworm metaphor with applications to collective robotics (2005) Proceedings 2005 IEEE Swarm Intelligence Symposium, pp. 84-91. , SIS 2005; Karaboga, D., (2005) An Idea Based on Honey Bee Swarm for Numerical Optimization, 200, pp. 1-10. , Technical report-tr06, Erciyes university, engineering faculty, computer engineering department; Yang, X.-S., (2005) Engineering optimizations via nature-inspired virtual bee algorithms, pp. 317-323. , Springer, Berlin; Ghanbarzadeh, A., Ko�, E., Otri, S., Rahim, S., Zaidi, M., The bees algorithm�a novel tool for complex optimisation problems (2006) Intell. Prod. Mach. Syst, pp. 454-459; Chu, S.-C., Tsai, P., Pan, J.-S., (2006) Cat swarm optimization, pp. 854-858. , Springer, Berlin; Mehrabian, A.R., Lucas, C., A novel numerical optimization algorithm inspired from weed colonization (2006) Ecol Inform, 1 (4), pp. 355-366; Martin, R., Stephen, W., (2006) Termite: a swarm intelligent routing algorithm for mobile wireless ad-hoc networks, pp. 155-184. , Springer, Berlin; Yang, X.-S., Lees, J.M., Morley, C.T., (2006) Application of virtual ant algorithms in the optimization of CFRP shear strengthened precracked structures, pp. 834-837. , Springer, Berlin; Karaboga, D., Basturk, B., A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm (2007) J Glob Optim, 39 (3), pp. 459-471; Chen, T.-C., Tsai, P.-W., Chu, S.-C., Pan, J.-S., A novel optimization approach: Bacterial-GA foraging (2007) Second International Conference on Innovative Computing, Information and Control (ICICIC 2007); Su, S., Wang, J., Fan, W., Yin, X., Good lattice swarm algorithm for constrained engineering design optimization (2007) 2007 International Conference on Wireless Communications, Networking and Mobile Computing, pp. 6415-6418; Zhao, R.Q., Tang, W.S., Monkey algorithm for global numerical optimization (2008) J Uncertain Syst, 2 (3), pp. 165-176; Nanda, S.J., Panda, G., A survey on nature inspired metaheuristic algorithms for partitional clustering (2014) Swarm Evol Comput, 16, pp. 1-18; Simon, D., Biogeography-based optimization (2008) IEEE Trans Evol Comput, 12 (6), pp. 702-713; Chu, Y., Mi, H., Liao, H., Ji, Z., Wu, Q.H., A fast bacterial swarming algorithm for high-dimensional function optimization (2008) 2008 IEEE Congress on Evolutionary Computation (Ieee World Congress on Computational Intelligence), pp. 3135-3140; Bastos Filho, C.J.A., de Lima Neto, F.B., Lins, A.J.C.C., Nascimento, A.I.S., Lima, M.P., A novel search algorithm based on fish school behavior (2008) 2008 IEEE International Conference on Systems, Man and Cybernetics, pp. 2646-2651; Havens, T.C., Spain, C.J., Salmon, N.G., Keller, J.M., Roach infestation optimization (2008) 2008 IEEE Swarm Intelligence Symposium, pp. 1-7; Comellas, F., Martinez-Navarro, J., Bumblebees (2009) Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary computation�GEC�09, p. 811; Yang, X.-S., Deb, S., Cuckoo search via L�vy flights (2009) 2009 World Congress on Nature & Biologically Inspired Computing (Nabic), pp. 210-214; He, S., Wu, Q.H., Saunders, J.R., Group search optimizer: an optimization algorithm inspired by animal searching behavior (2009) IEEE Trans Evol Comput, 13 (5), pp. 973-990; Premaratne, U., Samarabandu, J., Sidhu, T., A new biologically inspired optimization algorithm (2009) 2009 International Conference on Industrial and Information Systems (ICIIS), pp. 279-284. , 2009; Yang, X.-S., (2010) A new metaheuristic bat-inspired algorithm, pp. 65-74. , Springer, Berlin; Iordache, S., Consultant-guided search (2010) Proceedings of the 12Th Annual Conference on Genetic and Evolutionary computation�GECCO�10, p. 225; Yang, X.-S., Deb, S., (2010) Eagle strategy using L�vy walk and firefly algorithms for stochastic optimization, pp. 101-111. , Springer, Berlin; Yang, X.S., Firefly algorithm, stochastic test functions and design optimisation (2010) Int J Bio Inspired Computation, 2 (2), pp. 78-84; Chen, H., Zhu, Y., Hu, K., He, X., Hierarchical swarm model: a new approach to optimization (2010) Discrete Dyn Nat Soc, 2010, pp. 1-30; Hedayatzadeh, R., Akhavan Salmassi, F., Keshtgari, M., Akbari, R., Ziarati, K., Termite colony optimization: A novel approach for optimizing continuous problems (2010) 2010 18Th Iranian Conference on Electrical Engineering, pp. 553-558; Parpinelli, R.S., Lopes, H.S., An eco-inspired evolutionary algorithm applied to numerical optimization (2011) 2011 Third World Congress on Nature and Biologically Inspired Computing, pp. 466-471; Pan, W.-T., A new fruit fly optimization algorithm: taking the financial distress model as an example (2012) Knowl Based Syst, 26, pp. 69-74; Ting, T.O., Man, K.L., Guan, S.-U., Nayel, M., Wan, K., (2012) Weightless swarm algorithm (WSA) for dynamic optimization problems, pp. 508-515. , Springer, Berlin; Civicioglu, P., Artificial cooperative search algorithm for numerical optimization problems (2013) Inf Sci (Ny), 229, pp. 58-76; Yang, X.-S., (2012) Flower pollination algorithm for global optimization, pp. 240-249. , Springer, Berlin; Hern�ndez, H., Blum, C., Distributed graph coloring: an approach based on the calling behavior of Japanese tree frogs (2012) Swarm Intell, 6 (2), pp. 117-150; Gandomi, A.H., Alavi, A.H., Krill herd: a new bio-inspired optimization algorithm (2012) Commun Nonlinear Sci Numer Simul, 17 (12), pp. 4831-4845; Mozaffari, A., Fathi, A., Behzadipour, S., The great salmon run: a novel bio-inspired algorithm for artificial system design and optimisation (2012) Int J BioInspired Comput, 4 (5), p. 286; Maia, R.D., de Castro, L.N., Caminhas, W.M., Bee colonies as model for multimodal continuous optimization: the OptBees algorithm (2012) IEEE Congr Evol Comput, 2012, pp. 1-8; Tang, R., Fong, S., Yang, X.S., Deb, S., Wolf search algorithm with ephemeral memory (2012) Seventh International Conference on Digital Information Management (ICDIM 2012), pp. 165-172. , IEEE; Kaveh, A., Farhoudi, N., A new optimization method: dolphin echolocation (2013) Adv Eng Softw, 59, pp. 53-70; Sur, C., Sharma, S., Shukla, A., (2013) Egyptian vulture optimization algorithm�a new nature inspired meta-heuristics for knapsack problem, pp. 227-237. , Springer, Berlin; Neshat, M., Sepidnam, G., Sargolzaei, M., Swallow swarm optimization algorithm: a new method to optimization (2013) Neural Comput Appl, 23 (2), pp. 429-454; Li, X., Zhang, J., Yin, M., Animal migration optimization: an optimization algorithm inspired by animal migration behavior (2014) Neural Comput Appl, 24 (7-8), pp. 1867-1877; Meng, X., Liu, Y., Gao, X., Zhang, H., (2014) A new bio-inspired algorithm: chicken swarm optimization, pp. 86-94. , Springer, Cham; Mirjalili, S., Mirjalili, S.M., Lewis, A., Grey Wolf Optimizer (2014) Adv Eng Softw, 69, pp. 46-61; Mirjalili, S., The ant lion optimizer (2015) Adv Eng Softw, 83, pp. 80-98; Uymaz, S.A., Tezel, G., Yel, E., Artificial algae algorithm (AAA) for nonlinear global optimization (2015) Appl Soft Comput, 31, pp. 153-171; Meng, X.-B., Gao, X.Z., Lu, L., Liu, Y., Zhang, H., A new bio-inspired optimisation algorithm: bird swarm algorithm (2016) J Exp Theor Artif Intell, 28 (4), pp. 673-687; Mirjalili, S., Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems (2016) Neural Comput Appl, 27 (4), pp. 1053-1073; Li, M.D., Zhao, H., Weng, X.W., Han, T., A novel nature-inspired algorithm for optimization: virus colony search (2016) Adv Eng Softw, 92, pp. 65-88; Askarzadeh, A., A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm (2016) Comput Struct, 169, pp. 1-12; Yong, W., Tao, W., Cheng-Zhi, Z., Hua-Juan, H., A new stochastic optimization approach�dolphin swarm optimization algorithm (2016) Int J Comput Intell Appl, 15 (2), p. 1650011; Abedinia, O., Amjady, N., Ghasemi, A., A new metaheuristic algorithm based on shark smell optimization (2016) Complexity, 21 (5), pp. 97-116; Mirjalili, S., Lewis, A., The whale optimization algorithm (2016) Adv Eng Softw, 95, pp. 51-67; Qi, X., Zhu, Y., Zhang, H., A new meta-heuristic butterfly-inspired algorithm (2017) J Comput Sci, 23, pp. 226-239; Saremi, S., Mirjalili, S., Lewis, A., Grasshopper optimisation algorithm: theory and application (2017) Adv Eng Softw, 105, pp. 30-47; Jahani, E., Chizari, M., Tackling global optimization problems with a novel algorithm�Mouth Brooding Fish algorithm (2018) Appl Soft Comput, 62, pp. 987-1002; Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M., Salp swarm algorithm: a bio-inspired optimizer for engineering design problems (2017) Adv Eng Softw, 114, pp. 163-191; Fausto, F., Cuevas, E., Valdivia, A., Gonz�lez, A., A global optimization algorithm inspired in the behavior of selfish herds (2017) Biosystems, 160, pp. 39-55; Dhiman, G., Kumar, V., Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications (2017) Adv Eng Softw, 114, pp. 48-70; Jain, M., Singh, V., Rani, A., A novel nature-inspired algorithm for optimization: squirrel search algorithm (2019) Swarm Evol Comput, 44, pp. 148-175; Creutz, M., Moriarty, K.J.M., Implementation of the microcanonical Monte Carlo simulation algorithm for SU(N) lattice gauge theory calculations (1983) Comput Phys Commun, 30 (3), pp. 255-257; Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., Optimization by simulated annealing (1983) Science, 220 (4598), pp. 671-680; Bishop, J.M., Stochastic searching networks (1989) 1989 First IEE International Conference on Artificial Neural Networks, 313, pp. 329-331. , Conf. Publ; Vicsek, T., Czir�k, A., Ben-Jacob, E., Cohen, I., Shochet, O., Novel type of phase transition in a system of self-driven particles (1995) Phys Rev Lett, 75 (6), pp. 1226-1229; Mladenovi?, N., Hansen, P., Variable neighborhood search (1997) Comput Oper Res, 24 (11), pp. 1097-1100; Linhares, A., Preying on optima: A predatory search strategy for combinatorial problems (1998) SMC�98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics, 3, pp. 2974-2978. , (Cat. No. 98CH36218); Murase, H., Finite element inverse analysis using a photosynthetic algorithm (2000) Comput Electron Agric, 29 (1-2), pp. 115-123; Geem, Z.W., Kim, J.H., Loganathan, G.V., A new heuristic optimization algorithm: harmony search (2001) Simulation, 76 (2), pp. 60-68; Webster, B., Bernhard, P.J., (2003) A Local Search Optimization Algorithm Based on Natural Principles of Gravitation, , CS-2003-10, Florida Institute of Technology; Erol, O.K., Eksin, I., A new optimization method: big bang-big crunch (2006) Adv Eng Softw, 37 (2), pp. 106-111; Formato, R.A., CENTRAL FORCE OPTIMIZATION: A NEW METAHEURISTIC WITH APPLICATIONS IN APPLIED ELECTROMAGNETICS (2007) Progress In Electromagnetics Research, 77, pp. 425-491; Hosseini, H.S., Problem solving by intelligent water drops (2007) IEEE Congr Evol Comput, 2007, pp. 3226-3231; Rabanal, P., Rodr�guez, I., Rubio, F., Using river formation dynamics to design heuristic algorithms (2007) Unconventional Computation, pp. 163-177. , Springer, Berlin; Monismith, D.R., Mayfield, B.E., Slime mold as a model for numerical optimization (2008) 2008 IEEE Swarm Intelligence Symposium, pp. 1-8. , IEEE; Rashedi, E., Nezamabadi-pour, H., Saryazdi, S., GSA: a gravitational search algorithm (2009) Inf Sci (Ny), 179 (13), pp. 2232-2248; Kaveh, A., Talatahari, S., A novel heuristic optimization method: charged system search (2010) Acta Mech, 213 (3-4), pp. 267-289; Cuevas, E., Oliva, D., Zaldivar, D., P�rez-Cisneros, M., Sossa, H., Circle detection using electro-magnetism optimization (2012) Inf Sci (Ny), 182 (1), pp. 40-55; Shah-Hosseini, H., Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation Some of the authors of this publication are also working on these related projects: applications of population-based optimization methods View project Self-ception View project Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation (2011) Artic Int J Comput Sci Eng, 6 (2), pp. 132-140; Tamura, K., Yasuda, K., Spiral dynamics inspired optimization (2011) J Adv Comput Intell Intell Inf, 15 (8), pp. 1116-1122; Hatamlou, A., Black hole: a new heuristic optimization approach for data clustering (2013) Inf Sci (Ny), 222, pp. 175-184; Moghaddam, F.F., Moghaddam, R.F., Cheriet, M., Curved space optimization: A random search based on general relativity theory (2012) Neural Evol Comput; Kaveh, A., Khayatazad, M., A new meta-heuristic method: ray optimization (2012) Comput Struct, 112-113, pp. 283-294; Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M., Water cycle algorithm�a novel metaheuristic optimization method for solving constrained engineering optimization problems (2012) Comput Struct, 110-111, pp. 151-166; Gao-Wei, Y., Zhanju, H., A novel atmosphere clouds model optimization algorithm (2012) 2012 International Conference on Computing, Measurement, Control and Sensor Network, pp. 217-220; Sadollah, A., Bahreininejad, A., Eskandar, H., Hamdi, M., Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems (2013) Appl Soft Comput, 13 (5), pp. 2592-2612; Kaveh, A., Mahdavi, V.R., Colliding bodies optimization: a novel meta-heuristic method (2014) Comput Struct, 139, pp. 18-27; Moein, S., Logeswaran, R., KGMO: a swarm optimization algorithm based on the kinetic energy of gas molecules (2014) Inf Sci (Ny), 275, pp. 127-144; Shareef, H., Ibrahim, A.A., Mutlag, A.H., Lightning search algorithm (2015) Appl Soft Comput, 36, pp. 315-333; Baykaso?lu, A., Akpinar, ?., Weighted superposition attraction (WSA): a swarm intelligence algorithm for optimization problems�part 1: unconstrained optimization (2017) Appl Soft Comput, 56, pp. 520-540; Mirjalili, S., SCA: a sine cosine algorithm for solving optimization problems (2016) Knowl Based Syst, 96, pp. 120-133; Mirjalili, S., Mirjalili, S.M., Hatamlou, A., Multi-verse optimizer: a nature-inspired algorithm for global optimization (2016) Neural Comput Appl, 27 (2), pp. 495-513; Tabari, A., Ahmad, A., A new optimization method: electro-search algorithm (2017) Comput Chem Eng, 103, pp. 1-11; Nematollahi, A.F., Rahiminejad, A., Vahidi, B., A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization (2017) Appl Soft Comput, 59, pp. 596-621; Kaveh, A., Dadras, A., A novel meta-heuristic optimization algorithm: thermal exchange optimization (2017) Adv Eng Softw, 110, pp. 69-84; Husseinzadeh Kashan, A., Tavakkoli-Moghaddam, R., Gen, M., Find-fix-finish-exploit-analyze (F3EA) meta-heuristic algorithm: an effective algorithm with new evolutionary operators for global optimization (2019) Comput Ind Eng, 128, pp. 192-218; Ray, T., Liew, K.M., Society and civilization: an optimization algorithm based on the simulation of social behavior (2003) IEEE Trans Evol Comput, 7 (4), pp. 386-396; Zhang, L.M., Dahlmann, C., Zhang, Y., Human-inspired algorithms for continuous function optimization (2009) 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, pp. 318-321; Kashan, A.H., League championship algorithm: A new algorithm for numerical function optimization (2009) 2009 International Conference of Soft Computing and Pattern Recognition, pp. 43-48; Xu, Y., Cui, Z., Zeng, J., (2010) Social emotional optimization algorithm for nonlinear constrained optimization problems, pp. 583-590. , Springer, Berlin; Shi, Y., (2011) Brain storm optimization algorithm, pp. 303-309. , Springer, Berlin; Rao, R.V., Savsani, V.J., Vakharia, D.P., Teaching�learning-based optimization: an optimization method for continuous non-linear large scale problems (2012) Inf Sci (Ny), 183 (1), pp. 1-15; Shayeghi, H., Dadashpour, J., Anarchic society optimization based PID control of an automatic voltage regulator (AVR) system (2012) Electr Electron Eng, 2 (4), pp. 199-207; Moghdani, R., Salimifard, K., Volleyball premier league algorithm (2018) Appl Soft Comput, 64, pp. 161-185; Awad, N.H., Ali, M.Z., Liang, J.J., Qu, B.Y., Suganthan, P.N., (2016) Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization, , Technical Report, Nanyang Technological University Singapore; Das, S., Suganthan, P.N., (2010) Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems, , Tech. Rep; Garc�a, S., Molina, D., Lozano, M., Herrera, F., A study on the use of non-parametric tests for analyzing the evolutionary algorithms� behaviour: a�case study on�the�CEC�2005 special session on�real parameter optimization (2009) J Heuristics, 15 (6), pp. 617-644 | |
dcterms.source | Scopus |