Selective VEGFR-2 inhibitors: Synthesis of pyridine derivatives, cytotoxicity and apoptosis induction profiling

Loading...
Thumbnail Image

Date

2020-10

Journal Title

Journal ISSN

Volume Title

Type

Article

Publisher

Elsevier Ltd

Series Info

Bioorganic Chemistry;Volume 103, October 2020, 104222

Abstract

VEGFR-2 is a key regulator in cancer angiogenesis. This research displays the design and synthesis of novel 3-cyano-6-naphthylpyridine scaffold-based derivatives as selective VEGFR-2 inhibitors and cytotoxic agents. In vitro percent kinase activity inhibition screening against a panel of 23 kinases at a single high dose (30 nM) affirmed that VEGFR-2 was selectively the most responsive to inhibition by the investigated chemotypes. IC50 values determination demonstrated kinase inhibitory activities of the test compounds at the sub-nanomolar level. In vitro testing of the new compounds against two prostate cancer cell lines namely PC3 and DU145 and two breast cancer cell lines namely MCF-7 and MDA-MB435 confirmed their potent cytotoxic activity with IC50s at the nanomolar level. The most active compound against MCF-7 viz. 11d was subjected to an in vivo examination against a xenograft mouse model and was found effective. Studying the tissue mRNA expression levels of various cell cycle controlling biomolecules in 11d-treated MCF-7 cells demonstrated (i) upregulation of p53, p21 and p27, (ii) cleavage of PARP protein, (iii) activation of caspase-3, −8 and −9, (iv) downregulation of the anti-apoptotic protein Bcl, (v) upregulation of the pro-apoptotic protein Bax, and (vi) decreased expression of Cdks 2, 4, 6 and cyclin D1. Additionally, 11d affected a cell cycle arrest at the G1 phase in treated MCF-7 cells and an S phase arrest in MCF-7 p53 knockdown cells. Additionally, molecular docking was performed to predict how 11d might bind to its biological target VEGFR-2. Finally, in-silico ADME and drug-likeness profiling of these derivatives demonstrated favorable properties thereof.

Description

Keywords

Naphthylpyridines, Cytotoxicity, Cell cycle arrest, Apoptosis, Kinase inhibition, VEGFR-2 selective inhibition

Citation

Full Text link