Study of microRNAs-21/221 as potential breast cancer biomarkers in Egyptian women
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Motawi T.M.K. | |
dc.contributor.author | Sadik N.A.H. | |
dc.contributor.author | Shaker O.G. | |
dc.contributor.author | El Masry M.R. | |
dc.contributor.author | Mohareb F. | |
dc.contributor.other | Biochemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Kasr El-Einy | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Medical Biochemistry and Molecular Biology Department | |
dc.contributor.other | Faculty of Medicine | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Egypt; Biochemistry Department | |
dc.contributor.other | Faculty of Dentistry | |
dc.contributor.other | October University for Modern Sciences & Arts (MSA) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; The Bioinformatics Group | |
dc.contributor.other | School of Energy | |
dc.contributor.other | Environment and AgriFood | |
dc.contributor.other | Cranfield University | |
dc.contributor.other | Bedford | |
dc.contributor.other | MK43 0AL | |
dc.contributor.other | United Kingdom | |
dc.date.accessioned | 2020-01-09T20:41:34Z | |
dc.date.available | 2020-01-09T20:41:34Z | |
dc.date.issued | 2016 | |
dc.description | Scopus | |
dc.description.abstract | microRNAs (miRNAs) play an important role in cancer prognosis. They are small molecules, approximately 17�25 nucleotides in length, and their high stability in human serum supports their use as novel diagnostic biomarkers of cancer and other pathological conditions. In this study, we analyzed the expression patterns of miR-21 and miR-221 in the serum from a total of 100 Egyptian female subjects with breast cancer, fibroadenoma, and healthy control subjects. Using microarray-based expression profiling followed by real-time polymerase chain reaction validation, we compared the levels of the two circulating miRNAs in the serum of patients with breast cancer (n=50), fibroadenoma (n=25), and healthy controls (n=25). The miRNA SNORD68 was chosen as the housekeeping endogenous control. We found that the serum levels of miR-21 and miR-221 were significantly overexpressed in breast cancer patients compared to normal controls and fibroadenoma patients. Receiver Operating Characteristic (ROC) curve analysis revealed that miR-21 has greater potential in discriminating between breast cancer patients and the control group, while miR-221 has greater potential in discriminating between breast cancer and fibroadenoma patients. Classification models using k-Nearest Neighbor (kNN), Nave Bayes (NB), and Random Forests (RF) were developed using expression levels of both miR-21 and miR-221. Best classification performance was achieved by NB Classification models, reaching 91% of correct classification. Furthermore, relative miR-221 expression was associated with histological tumor grades. Therefore, it may be concluded that both miR-21 and miR-221 can be used to differentiate between breast cancer patients and healthy controls, but that the diagnostic accuracy of serum miR-21 is superior to miR-221 for breast cancer prediction. miR-221 has more diagnostic power in discriminating between breast cancer and fibroadenoma patients. The overexpression of miR-221 has been associated with the breast cancer grade. We also demonstrated that the combined expression of miR-21 and miR-221can be successfully applied as breast cancer biomarkers. 2016 Elsevier B.V. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=15636&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.gene.2016.01.042 | |
dc.identifier.doi | PubMed ID : 26827795 | |
dc.identifier.issn | 3781119 | |
dc.identifier.other | https://doi.org/10.1016/j.gene.2016.01.042 | |
dc.identifier.other | PubMed ID : 26827795 | |
dc.identifier.uri | https://t.ly/j66gJ | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartofseries | Gene | |
dc.relation.ispartofseries | 590 | |
dc.subject | Breast cancer | en_US |
dc.subject | Fibroadenoma | en_US |
dc.subject | miR-21 | en_US |
dc.subject | miR-221 | en_US |
dc.subject | MiRNA | en_US |
dc.subject | microRNA 21 | en_US |
dc.subject | microRNA 221 | en_US |
dc.subject | microRNA SNORD68 | en_US |
dc.subject | tumor marker | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | microRNA | en_US |
dc.subject | MIRN21 microRNA, human | en_US |
dc.subject | MIRN221 microRNA, human | en_US |
dc.subject | tumor marker | en_US |
dc.subject | adult | en_US |
dc.subject | aged | en_US |
dc.subject | Article | en_US |
dc.subject | Bayesian learning | en_US |
dc.subject | blood level | en_US |
dc.subject | breast cancer | en_US |
dc.subject | breast fibroadenoma | en_US |
dc.subject | cancer classification | en_US |
dc.subject | cancer diagnosis | en_US |
dc.subject | cancer grading | en_US |
dc.subject | controlled study | en_US |
dc.subject | diagnostic accuracy | en_US |
dc.subject | diagnostic test accuracy study | en_US |
dc.subject | diagnostic value | en_US |
dc.subject | Egyptian | en_US |
dc.subject | female | en_US |
dc.subject | gene expression | en_US |
dc.subject | gene expression profiling | en_US |
dc.subject | gene overexpression | en_US |
dc.subject | histopathology | en_US |
dc.subject | housekeeping gene | en_US |
dc.subject | human | en_US |
dc.subject | human tissue | en_US |
dc.subject | k nearest neighbor | en_US |
dc.subject | major clinical study | en_US |
dc.subject | microarray analysis | en_US |
dc.subject | molecular diagnosis | en_US |
dc.subject | priority journal | en_US |
dc.subject | random forest | en_US |
dc.subject | real time polymerase chain reaction | en_US |
dc.subject | receiver operating characteristic | en_US |
dc.subject | sensitivity and specificity | en_US |
dc.subject | algorithm | en_US |
dc.subject | blood | en_US |
dc.subject | Breast Neoplasms | en_US |
dc.subject | case control study | en_US |
dc.subject | cluster analysis | en_US |
dc.subject | demography | en_US |
dc.subject | Egypt | en_US |
dc.subject | gene expression regulation | en_US |
dc.subject | genetics | en_US |
dc.subject | metabolism | en_US |
dc.subject | middle aged | en_US |
dc.subject | multivariate analysis | en_US |
dc.subject | pathology | en_US |
dc.subject | principal component analysis | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Biomarkers, Tumor | en_US |
dc.subject | Breast Neoplasms | en_US |
dc.subject | Case-Control Studies | en_US |
dc.subject | Cluster Analysis | en_US |
dc.subject | Demography | en_US |
dc.subject | Egypt | en_US |
dc.subject | Female | en_US |
dc.subject | Gene Expression Regulation, Neoplastic | en_US |
dc.subject | Humans | en_US |
dc.subject | MicroRNAs | en_US |
dc.subject | Middle Aged | en_US |
dc.subject | Multivariate Analysis | en_US |
dc.subject | Principal Component Analysis | en_US |
dc.subject | ROC Curve | en_US |
dc.title | Study of microRNAs-21/221 as potential breast cancer biomarkers in Egyptian women | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Badar, F., Faruqui, Z.S., Ashraf, A., Uddin, N., Third world issues in breast cancer detection (2007) J. Pak. Med. Assoc., 57, pp. 137-140; Bailey, C.M., Khalkhali-Ellis, Z., Seftor, E.A., Hendrix, M.J., Biological functions of maspin (2006) J. Cell. Physiol., 209, pp. 617-624; Barshack, I., Lithwick-Yanai, G., Afek, A., Rosenblatt, K., Tabibian-Keissar, H., Zepeniuk, M., MicroRNA expression differentiates between primary lung tumors and metastases to the lung (2010) Pathol. Res. Pract., 206 (8), pp. 578-584; Beaglehole, R., Yach, D., Globalisation and the prevention and control of non-communicable disease: the neglected chronic diseases of adults (2003) Lancet, 362 (903), p. 908; Blenkiron, C., MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype (2007) Genome Biol., 8, p. R214; Bray, F., Ren, J.S., Masuyer, E., Ferlay, J., Estimates of global cancer prevalence for 27 sites in the adult population in (2008) Int. J. Cancer, 132 (5), pp. 1133-1145; Brew, K., Dinakarpandian, D., Nagase, H., Tissue inhibitors of metalloproteinases: evolution, structure and function (2000) Biochim. Biophys. Acta, 1477, pp. 267-283; Chan, J.A., Krichevsky, A.M., Kosik, K.S., MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells (2005) Cancer Res., 65 (14), pp. 6029-6033; Corcoran, C., Friel, A.M., Duffy, M.J., Crown, J., O'Driscoll, L., Intracellular and extracellular microRNAs in breast cancer (2011) Clin. Chem., 57, pp. 18-32; Dixon, J.M., Cystic diseases and fibroadenoma of the breast: natural history and relation to breast cancer risk. (1991) Br. Med. Bull., 47 (2), pp. 258-271; Dudda, J.C., Salaun, B., Ji, Y., Palmer, D.C., Monnot, G.C., MicroRNA-155 is required for effector CD8(+) T cell responses to virus infection and cancer (2013) Immunity, 38 (4), pp. 742-753; Elatar, I., Cancer Registration, NCI Egypt 2001; National Cancer Institute: Cairo, Egypt (2002); Fechner, R.E., Fibroadenoma and related lesions (1988) Diagnostic Histopathology of the Breast., pp. 72-85. , Page DL Anderson TJ Churchill Livingstone Edinburgh, Scotland; Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Bray, F., GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. (2013), http://globocan.iarc.fr, International Agency for Research on Cancer Lyon, France (, accessed on 13/07/2015); Fornari, F., Gramantieri, L., Ferracin, M., Veronese, A., Sabbioni, S., Calin, G.A., miR 221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma (2008) Oncogene, 27, pp. 5651-5661; Frankel, L.B., Christoffersen, N.R., Jacobsen, A., Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells (2008) J. Biol. Chem., 283, pp. 1026-1033; Galardi, S., Mercatelli, N., Giorda, E., Massalini, S., Frajese, G.V., miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1 (2007) J. Biol. Chem., 282, pp. 23716-23724; Gallo, A., Tandon, M., Alevizos, I., Illei, G.G., The majority of microRNAs detectable in serum and saliva is concentrated in exosomes (2012) PLoS One, 7 (3), p. e30679; Garofalo, M., Condorelli, G.L., Croce, C.M., Condorelli, G., MicroRNAs as regulators of death receptors signaling (2010) Cell Death Differ., 17, pp. 200-208; Gill, J.K., Maskarinec, G., Wilkens, L.R., Pike, M.C., Henderson, B.E., Kolonel, L.N., Gill, J.K., Pike, M.C., Nonsteroidal antiinflammatory drugs and breast cancer risk: the multiethnic cohort (2007) Am. J. Epidemiol., 166 (1150), p. 1158; Han, M., Liu, M., Wang, Y., Mo, Z., Bi, X., Liu, Z., Re-expression of miR-21 contributes to migration and invasion by inducing epithelial-mesenchymal transition consistent with cancer stem cell characteristics in MCF-7 cells (2012) Mol. Cell. Biochem., 363, pp. 427-436; Han, M., Liu, M., Wang, Y., Chen, X., Xu, J., Sun, Y., Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN (2012) PLoS One, 7, p. e39520; Harrington, P., Machine learning in action (2012), Manning Publications Co. Shelter Island, NY; Hortobagyi, G.N., de la Garza Salazar, J., Pritchard, K., Amadori, D., Haidinger, R., Hudis, C.A., Khaled, H., Namer, M., The global breast cancer burden: variations in epidemiology and survival (2005) Clin. Breast Cancer, 6 (391), p. 401; Hunter, B.T., Roberts, C.C., Hunt, K.R., Fajardo, L.L., Occurrence of fibroadenomas in postmenopausal women referred for breast biopsy. (1996) J. Ageing Geriatr., 44, pp. 61-64; Ibrahim, A.S., Komodiki, C., Najjar, K., Rahamimoff, R., Tuncer, M., Cancer Profile in Gharbiah, Egypt (2002) Methodology and Results; Ministry of Health and Population Egypt and Middle East Cancer Consortium: Cairo, Egypt; Iorio, M.V., Ferracin, M., Liu, C., MicroRNA gene expression deregulation in human breast (2005) Cancer Res., 65, pp. 7065-7070; Kang, S.G., Ha, Y.R., Kim, S.J., Kang, S.H., Park, H.S., Do microRNA 96, 145 and 221 expressions really aid in the prognosis of prostate carcinoma? (2012) Asian J. Androl., 14 (5), pp. 752-757; Kantardzic, M., Data Mining: Concepts, Models, Methods, and Algorithms (2005) Second Edition, J. Comput. Inf. Sci. Eng., pp. 394-395. , Second Edition 5(December); Kawaguchi, T., Komatsu, S., Ichikawa, D., Morimura, R., Tsujiura, M., Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer (2013) Br. J. Cancer, 108 (2), pp. 361-369; Kosaka, N., Iguchi, H., Ochiya, T., Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis (2010) Cancer Sci., 101, pp. 2087-2092; Kouhkan, F., Alizadeh, S., Kaviani, S., Soleimani, M., Pourfathollah, A.A., Amirizadeh, N., Abroun, S., Mohamadi, S., MiR-155 downregulation by LNA Inhibitor can reduce cell growth and proliferation in PC12 cell line (2011) Avicenna J. Med. Biotechnol., (2), pp. 61-66; Krichevsky, A.M., Gabriely, G., miR-21: a small multi-faceted RNA (2009) J. Cell. Mol. Med., 13 (1), pp. 39-53; Lagos-Quintana, M., Rauhut, R., Lendeckel, W., Tuschl, T., Identification of novel genes coding for small expressed RNAs (2001) Science, 294, pp. 853-858; Lau, N.C., Lim, L.P., Weinstein, E.G., Bartel, D.P., An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans (2001) Science, 294, pp. 858-862; Le Sage, C., Nagel, R., Egan, D.A., Schrier, M., Mesman, E., Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation (2007) EMBO J., 26 (15), pp. 3699-3708; Lee, R.C., Ambros, V., An extensive class of small RNAs in Caenorhabditis elegans (2001) Science, 294, pp. 862-864; Lewis, B.P., Burge, C.B., Bartel, D.P., Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets (2005) Cell, 120, pp. 15-20; Li, M., Li, J., Ding, X., He, M., Cheng, S.Y., MicroRNA and cancer. (2010) AAPS J., 12, pp. 309-317; Li, J., Wang, Y., Yu, W., Chen, J., Luo, J., Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance (2011) Biochem. Biophys. Res. Commun., 406 (1), pp. 70-73; Liu, K., Li, G., Fan, C., Diao, Y., Wu, B., Increased expression of MicroRNA-221 in gastric cancer and its clinical significance (2012) J. Int. Med. Res., 40 (2), pp. 467-474; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(?�Delta Delta C(T)) method (2001) Methods, (4), pp. 402-408; Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Golub, T.R., MicroRNA expression profiles classify human cancers (2005) Nature, 435, pp. 834-838; Manavalan, T.T., Teng, Y., Litchfield, L.M., Muluhngwi, P., Al-Rayyan, N., Reduced expression of miR-200 family members contributes to antiestrogen resistance in LY2 human breast cancer cells (2013) PLoS One, 8 (4), p. e62334; Mathivanan, S., Ji, H., Simpson, R.J., Exosomes: extracellular organelles important in intercellular communication (2010) J. Proteome, 73, pp. 1907-1920; Miller, T.E., Ghoshal, K., Ramaswamy, B., Roy, S., Datta, J., MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1 (2008) J. Biol. Chem., 283, pp. 29897-29903; Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Circulating microRNAs as stable blood-based markers for cancer detection (2008) Proc. Natl. Acad. Sci. U. S. A., 105 (30), pp. 10513-10518; Nassirpour, R., Mehta, P.P., Baxi, S.M., Yin, M.J., miR-221 promotes tumorigenesis in human triple negative breast cancer cells (2013) PLoS One, 8 (4), p. e62170; Ohshima, K., Inoue, K., Fujiwara, A., Hatakeyama, K., Kanto, K., Watanabe, Y., Muramatsu, K., Yamaguchi, K., Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line (2010) PLoS One, 5, p. e113247; Omar, S., Khaled, H., Gaafar, R., Zekry, A.R., Eissa, S., El-Khatib, O., Breast cancer in Egypt: a review of disease presentation and detection strategies (2003) East Mediterr. Health J., 9, pp. 448-463; Parkin, D.M., Fern�ndez, L.M., Use of statistics to assess the global burden of breast cancer (2006) Breast J., 12, pp. S70-S80; Perry, S.V., Vertebrate tropomyosin: distribution, properties and function (2001) J. Muscle Res. Cell Motil., 22, pp. 5-49; Pineau, P., Volinia, S., McJunkin, K., Marchio, A., Battiston, C., miR-221 overexpression contributes to liver tumorigenesis (2010) Proc. Natl. Acad. Sci. U. S. A., 107 (1), pp. 264-269; Porter, P., Westernizin women's risks? Breast cancer in lower-income countries (2008) N. Engl. J. Med., 358, pp. 213-216; Radojicic, J., Zaravinos, A., Vrekoussis, T., Kafousi, M., Spandidos, D.A., MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer (2011) Cell Cycle, 10 (3), pp. 507-517; Rao, X., Di Leva, G., Li, M., Fang, F., Devlin, C., MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways (2011) Oncogene, 30, pp. 1082-1097; Rizwan, M.M., Saadullah, M., Lack of awareness about breast cancer and its screening in developing countries (2009) Indian J. Cancer, 46, pp. 252-253; Shah, M.Y., Calin, G.A., MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer (2011) Genome Med., 3 (8), p. 56; Shenouda, S.K., Alahari, S.K., MicroRNA function in cancer: oncogene or a tumor suppressor? (2009) Cancer Metastasis Rev., 28, pp. 369-378; Si, M.L., Zhu, S., Wu, H., Lu, Z., Wu, F., Mo, Y.Y., MiR-21-mediated tumor growth (2007) Oncogene, 26, pp. 2799-2803; Song, M.S., Salmena, L., Pandolfi, P.P., The functions and regulation of the PTEN tumour suppressor (2012) Nat. Rev. Mol. Cell Biol., 13, pp. 283-296; StatSoft, I., Electronic Statistics Textbook (2013), Tulsa: OK StatSoft; Wang, Y., Zhou, B.P., Epithelial-mesenchymal transition in breast cancer progression and metastasis (2011) Chin. J. Cancer, 30 (9), pp. 603-611; Wang, Z., Zhang, H., He, L., Dong, W., Li, J., Association between the expression of four upregulated miRNAs and extrathyroidal invasion in papillary thyroid carcinoma (2013) Oncol. Targets Ther., 6, pp. 281-287; Waters, P.S., McDermott, A.M., Wall, D., Heneghan, H.M., Miller, N., Relationship between circulating and tissue microRNAs in a murine model of breast cancer (2012) PLoS One, 7 (11), p. e50459; World Medical Association, Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects (2008) JAMA, 310 (20), pp. 2191-2194. , PMID 24141714; Wurz, K., Garcia, R.L., Goff, B.A., Mitchell, P.S., Lee, J.H., MiR-221 and MiR-222 alterations in sporadic ovarian carcinoma: relationship to CDKN1B, CDKNIC and overall survival (2010) Genes Chromosom. Cancer, 49 (7), pp. 577-584; Yan, L.X., Huang, X.F., Shao, Q., Huang, M.Y., Deng, L., Wu, Q.L., MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis (2008) RNA, 14, pp. 2348-2360; Zhu, S., Si, M.L., Wu, H., Mo, Y.Y., MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1) (2007) J. Biol. Chem., 282, pp. 14328-14336; Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., Mo, Y.Y., MicroRNA-21 targets tumor suppressor genes in invasion and metastasis (2008) Cell Res., 18, pp. 350-359 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: