Robustness of high-gain observer-based nonlinear controllers to unmodeled actuators and sensors
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Mahmoud M.S. | |
dc.contributor.author | Khalil H.K. | |
dc.contributor.other | Dean of Engineering | |
dc.contributor.other | MSA University | |
dc.contributor.other | Amer Street | |
dc.contributor.other | Mesaha Square | |
dc.contributor.other | Dokki | |
dc.contributor.other | Egypt; Department of Electrical and Computer Engineering | |
dc.contributor.other | Michigan State University | |
dc.contributor.other | East Lansing | |
dc.contributor.other | MI 48824-1226 | |
dc.contributor.other | United States; Faculty of Engineering | |
dc.contributor.other | Arab Academy for Science and Technology | |
dc.contributor.other | PO Box 2033 | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-25T19:58:36Z | |
dc.date.available | 2020-01-25T19:58:36Z | |
dc.date.issued | 2002 | |
dc.description | Scopus | |
dc.description.abstract | We investigate the robust stabilization of a class of nonlinear systems in the presence of unmodeled actuator and sensor dynamics. We show that, given any globally bounded stabilizing state-feedback control, the closed-loop system performance can be recovered by a sufficiently fast high-gain observer in the presence of sufficiently fast actuator and sensor dynamics. The performance recovery includes recovery of exponential stability of the origin, the region of attraction and state trajectories. Moreover, it is shown that the sensor dynamics should be sufficiently faster than the observer dynamics; a restriction that does not apply to the actuator dynamics. � 2001 Elsevier Science Ltd. All rights reserved. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=24909&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/S0005-1098(01)00253-9 | |
dc.identifier.issn | 51098 | |
dc.identifier.other | https://doi.org/10.1016/S0005-1098(01)00253-9 | |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0005109801002539 | |
dc.language.iso | English | en_US |
dc.relation.ispartofseries | Automatica | |
dc.relation.ispartofseries | 38 | |
dc.subject | Actuators | en_US |
dc.subject | Nonlinear control | en_US |
dc.subject | Observers | en_US |
dc.subject | Reduced-order models | en_US |
dc.subject | Sensors | en_US |
dc.subject | Singular perturbation methods | en_US |
dc.subject | Actuators | en_US |
dc.subject | Feedback control | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Perturbation techniques | en_US |
dc.subject | Robustness (control systems) | en_US |
dc.subject | Sensors | en_US |
dc.subject | Singular perturbation methods | en_US |
dc.subject | Nonlinear control systems | en_US |
dc.title | Robustness of high-gain observer-based nonlinear controllers to unmodeled actuators and sensors | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Aldhaheri, A., Khalil, H.K., Effect of unmodeled actuator dynamics on output feedback stabilization of nonlinear systems (1996) Automatica, 32 (9), pp. 1323-1327; Atassi, A.N., Khalil, H.K., A separation principle for the stabilization of a class of nonlinear systems (1999) IEEE Transactions on Automatic Control, 44 (9), pp. 1672-1687; Bodson, M., Chiasson, J.N., Novotnak, R.T., Rekowski, R.B., High-performance nonlinear feedback control of a permanent magnet stepper motor (1993) IEEE Transactions on Control Techniques, 1 (1), pp. 5-14; Esfandiari, F., Khalil, H.K., Output feedback stabilization of fully linearizable systems (1992) International Journal of Control, 56, pp. 1007-1037; Isidori, A., A remark on the problem of semiglobal nonlinear output regulation (1997) IEEE Transactions on Automatic Control, 42 (12), pp. 1734-1738; Jankovic, M., Adaptive output feedback control of nonlinear feedback linearizable systems (1996) International Journal of Adaptive Control and Signal Processing, 10, pp. 1-18; Khalil, H.K., Robust servomechanism output feedback controllers for a class of feedback linearizable systems (1994) Automatica, 30 (10), pp. 1587-1599; Khalil, H.K., (1996) Nonlinear systems (2nd ed.), , Englewood Cliffs, NJ: Prentice-Hall; Khalil, H.K., Esfandiari, F., Semiglobal stabilization of a class of nonlinear systems using output feedback (1993) IEEE Transactions on Automatic Control, 38 (9), pp. 1412-1415; Kokotovic, P.V., Khalil, H.K., O'Reilly, J., (1986) Singular perturbation methods in control: Analysis and design, , New York: Academic Press; Kurzweil, J., On the inversion of Lyapunov's second theorem on stability of motion (1956) American Mathematical Society of Translations, Sr. 2, 24, pp. 19-77; Lin, Z., Saberi, A., Robust semi-global stabilization of minimum-phase input-output linearizable systems via partial state and output feedback (1995) IEEE Transactions on Automatic Control, 40 (6), pp. 1029-1041; Mahmoud, N., Khalil, H.K., Asymptotic regulation of minimum phase nonlinear systems using output feedback (1996) IEEE Transactions on Automatic Control, 41 (10), pp. 1402-1412; Teel, A., Praly, L., Global stabilizability and observability imply semi-global stabilizability by output feedback (1994) Systems Control Letters, 22, pp. 313-325; Teel, A., Praly, L., Tools for semiglobal stabilization by partial state and output feedback (1995) SIAM Journal of Control & Optimization, 33 (5), pp. 1443-1448; Zribi, M., Sira-Ramirez, H., Ngai, A., Static and dynamic sliding motor control schemes for a PM stepper motor (1998) Technical Report NTU-EEE-D4-L9801, , Nanyang Technological University | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: