Robustness of high-gain observer-based nonlinear controllers to unmodeled actuators and sensors

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorMahmoud M.S.
dc.contributor.authorKhalil H.K.
dc.contributor.otherDean of Engineering
dc.contributor.otherMSA University
dc.contributor.otherAmer Street
dc.contributor.otherMesaha Square
dc.contributor.otherDokki
dc.contributor.otherEgypt; Department of Electrical and Computer Engineering
dc.contributor.otherMichigan State University
dc.contributor.otherEast Lansing
dc.contributor.otherMI 48824-1226
dc.contributor.otherUnited States; Faculty of Engineering
dc.contributor.otherArab Academy for Science and Technology
dc.contributor.otherPO Box 2033
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-25T19:58:36Z
dc.date.available2020-01-25T19:58:36Z
dc.date.issued2002
dc.descriptionScopus
dc.description.abstractWe investigate the robust stabilization of a class of nonlinear systems in the presence of unmodeled actuator and sensor dynamics. We show that, given any globally bounded stabilizing state-feedback control, the closed-loop system performance can be recovered by a sufficiently fast high-gain observer in the presence of sufficiently fast actuator and sensor dynamics. The performance recovery includes recovery of exponential stability of the origin, the region of attraction and state trajectories. Moreover, it is shown that the sensor dynamics should be sufficiently faster than the observer dynamics; a restriction that does not apply to the actuator dynamics. � 2001 Elsevier Science Ltd. All rights reserved.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=24909&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/S0005-1098(01)00253-9
dc.identifier.issn51098
dc.identifier.otherhttps://doi.org/10.1016/S0005-1098(01)00253-9
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0005109801002539
dc.language.isoEnglishen_US
dc.relation.ispartofseriesAutomatica
dc.relation.ispartofseries38
dc.subjectActuatorsen_US
dc.subjectNonlinear controlen_US
dc.subjectObserversen_US
dc.subjectReduced-order modelsen_US
dc.subjectSensorsen_US
dc.subjectSingular perturbation methodsen_US
dc.subjectActuatorsen_US
dc.subjectFeedback controlen_US
dc.subjectMathematical modelsen_US
dc.subjectPerturbation techniquesen_US
dc.subjectRobustness (control systems)en_US
dc.subjectSensorsen_US
dc.subjectSingular perturbation methodsen_US
dc.subjectNonlinear control systemsen_US
dc.titleRobustness of high-gain observer-based nonlinear controllers to unmodeled actuators and sensorsen_US
dc.typeArticleen_US
dcterms.isReferencedByAldhaheri, A., Khalil, H.K., Effect of unmodeled actuator dynamics on output feedback stabilization of nonlinear systems (1996) Automatica, 32 (9), pp. 1323-1327; Atassi, A.N., Khalil, H.K., A separation principle for the stabilization of a class of nonlinear systems (1999) IEEE Transactions on Automatic Control, 44 (9), pp. 1672-1687; Bodson, M., Chiasson, J.N., Novotnak, R.T., Rekowski, R.B., High-performance nonlinear feedback control of a permanent magnet stepper motor (1993) IEEE Transactions on Control Techniques, 1 (1), pp. 5-14; Esfandiari, F., Khalil, H.K., Output feedback stabilization of fully linearizable systems (1992) International Journal of Control, 56, pp. 1007-1037; Isidori, A., A remark on the problem of semiglobal nonlinear output regulation (1997) IEEE Transactions on Automatic Control, 42 (12), pp. 1734-1738; Jankovic, M., Adaptive output feedback control of nonlinear feedback linearizable systems (1996) International Journal of Adaptive Control and Signal Processing, 10, pp. 1-18; Khalil, H.K., Robust servomechanism output feedback controllers for a class of feedback linearizable systems (1994) Automatica, 30 (10), pp. 1587-1599; Khalil, H.K., (1996) Nonlinear systems (2nd ed.), , Englewood Cliffs, NJ: Prentice-Hall; Khalil, H.K., Esfandiari, F., Semiglobal stabilization of a class of nonlinear systems using output feedback (1993) IEEE Transactions on Automatic Control, 38 (9), pp. 1412-1415; Kokotovic, P.V., Khalil, H.K., O'Reilly, J., (1986) Singular perturbation methods in control: Analysis and design, , New York: Academic Press; Kurzweil, J., On the inversion of Lyapunov's second theorem on stability of motion (1956) American Mathematical Society of Translations, Sr. 2, 24, pp. 19-77; Lin, Z., Saberi, A., Robust semi-global stabilization of minimum-phase input-output linearizable systems via partial state and output feedback (1995) IEEE Transactions on Automatic Control, 40 (6), pp. 1029-1041; Mahmoud, N., Khalil, H.K., Asymptotic regulation of minimum phase nonlinear systems using output feedback (1996) IEEE Transactions on Automatic Control, 41 (10), pp. 1402-1412; Teel, A., Praly, L., Global stabilizability and observability imply semi-global stabilizability by output feedback (1994) Systems Control Letters, 22, pp. 313-325; Teel, A., Praly, L., Tools for semiglobal stabilization by partial state and output feedback (1995) SIAM Journal of Control & Optimization, 33 (5), pp. 1443-1448; Zribi, M., Sira-Ramirez, H., Ngai, A., Static and dynamic sliding motor control schemes for a PM stepper motor (1998) Technical Report NTU-EEE-D4-L9801, , Nanyang Technological University
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: