Vibration Suppression of Subharmonic Resonance Response Using a Nonlinear Vibration Absorber
Date
2015
Authors
Journal Title
Journal ISSN
Volume Title
Type
Article
Publisher
ASME
Series Info
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME;Volume: 137 Issue: 2
Scientific Journal Rankings
Abstract
This paper is concerned with the vibration of a two degree-of-freedom (2DOF) nonlinear system subjected to multiparametric excitation forces. The vibrating motion of the system is described by the coupled differential equations having both quadratic and cubic terms. The aim of this work is to use a nonlinear absorber to control the vibration of the nonlinear system near the simultaneous subharmonic and internal resonances, where the vibrations are severe. Multiple scale perturbation technique (MSPT) is applied to obtain the averaged equations up to the second-order approximation. The steady-state response and their stability are studied numerically for the nonlinear system at the simultaneous subharmonic and internal resonances. Some recommendations regarding to the different system parameters are given following studying the effects of various parameters. Comparison with the available published work is made.
Description
Accession Number: WOS:000350966700024
Keywords
University of Nonlinear Vibration Absorber
Citation
1. Mead, D. J., 1988, Passive Vibration Control, Wiley, Chichester, UK. 2. Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations, Wiley, New York. 3. Eissa, M., 1999, “Vibration Control of Non-Linear Mechanical System via a Neutralizer,” Faculty of Electronic Engineering, Menouf, Egypt, Electronic Bulletin No. 18. 4. Tondl, A., and Nabergoj, R., 2000, “Dynamic Absorbers for an Externally Excited Pendulum,” J. Sound Vib., 234(4), pp. 611–624.10.1006/jsvi.1999.2892 Google ScholarCrossref 5. Ji, J. C., and Zhang, N., 2010, “Suppression of the Primary Resonance Vibrations of a Forced Nonlinear System Using a Dynamic Vibration Absorber,” J. Sound Vib., 329(11), pp. 2044–2056.10.1016/j.jsv.2009.12.020 Google ScholarCrossref 6. Ji, J. C., and Zhang, N., 2011, “Suppression of Super-Harmonic Resonance Response Using a Linear Vibration Absorber,” Mech. Res. Commun., 38(6), pp. 411–416.10.1016/j.mechrescom.2011.05.014 Google ScholarCrossref 7. Amer, Y. A., and El-Sayed, A. T., 2008, “Vibration Suppression of Non-Linear System via Non-Linear Absorber,” Commun. Nonlinear Sci. Numer. Simul., 13(9), pp.1948–1963.10.1016/j.cnsns.2007.04.018 Google ScholarCrossref 8. Kamel, M., Eissa, M., and El-Sayed, A. T., 2009, “Vibration Reduction of a Non-Linear Spring Pendulum Under Multi-Parametric Excitations via a Longitudinal Absorber,” Phys. Scr., 80(12), p. 025005.10.1088/0031-8949/80/02/025005 Google ScholarCrossref 9. Eissa, M., Kamel, M., and El-Sayed, A. T., 2010, “Vibration Reduction of Multi-Parametric Excited Spring Pendulum via a Transversally Tuned Absorber,” Nonlinear Dyn., 61(1–2), pp. 109–121.10.1007/s11071-009-9635-4 Google ScholarCrossref 10. El-Sayed, A. T., Kamel, M., and Eissa, M., 2010, “Vibration Reduction of a Pitch-Roll Ship Model With Longitudinal and Transverse Absorbers Under Multi Excitations,” Math. Comput. Modell., 52(9–10), pp. 1877–1898.10.1016/j.mcm.2010.07.027 Google ScholarCrossref 11. Eissa, M., Kamel, M., and El-Sayed, A. T., 2011, “Vibration Reduction of a Nonlinear Spring Pendulum Under Multi External and Parametric Excitations via a Longitudinal Absorber,” Meccanica, 46(2), pp. 325–340.10.1007/s11012-010-9311-2 Google ScholarCrossref 12. Eissa, M., Kamel, M., and El-Sayed, A. T., 2012, “Vibration Suppression of a 4-DOF Nonlinear Spring Pendulum via a Longitudinal and a Transverse Absorbers,” ASME J. Appl. Mech., 79(1), p. 011007.10.1115/1.4004551 Google ScholarCrossref 13. Eissa, M., Amer, Y. A., and Bauomy, H. S., 2007, “Active Control of an Aircraft Tail Subject to Harmonic Excitation,” J. Acta Mech. Sin., 23(4), pp. 451–462.10.1007/s10409-007-0077-2 Google ScholarCrossref 14. Amer, Y. A., and Bauomy, H. S., 2009, “Vibration Reduction in a 2DOF Twin Tail System to Parametric Excitations,” Commun. Nonlinear Sci. Numer. Simul., 14(1), pp. 560–573.10.1016/j.cnsns.2007.10.005 Google ScholarCrossref 15. Amer, Y. A., Bauomy, H. S., and Sayed, M., 2009, “Vibration Suppression in a Twin-Tail System to Parametric and External Excitations,” Comput. Math. Appl., 58(10), pp. 1947–1964.10.1016/j.camwa.2009.07.090 Google ScholarCrossref 16. Kamel, M., and Bauomy, H. S., 2009, “Nonlinear Oscillation of a Rotor-AMB System With Time Varying Stiffness and Multi-External Excitations,” ASME J. Vib. Acoust., 131(3), pp. 1–11.10.1115/1.3085884 Google ScholarCrossref 17. Kamel, M., and Bauomy, H. S., 2010, “Nonlinear Behavior of a Rotor-AMB System Under Multi-Parametric Excitations,” Meccanica, 45(1), pp. 7–22.10.1007/s11012-009-9213-3 Google ScholarCrossref 18. Eissa, M., Kamel, M., and Bauomy, H. S., 2011, “Nonlinear Behavior of Tuned Rotor-AMB System With Time Varying Stiffness,” J. Bifurcation Chaos, 21(1), pp. 195–207.10.1142/S0218127411028362 Google ScholarCrossref 19. Eissa, M., Kamel, M., and Bauomy, H. S., 2011, “Dynamics of Tuned an AMB–Rotor With Time Varying Stiffness and Mixed Excitations,” Meccanica, 47(3), pp. 585–601.10.1007/s11012-011-9469-2 Google ScholarCrossref 20. El-Ganaini, W., and El-Gohary, H. A., 2014, “Application of Time-Delay Absorber to Suppress Vibration of a Dynamical System to Tuned Excitation,” ASME J. Vib. Acoust., 136(4), pp. 1–10.10.1115/1.4027629 Google ScholarCrossref 21. Nayfeh, A. H., 1973, Perturbation Methods, Wiley, New York. 22. Lee, W. K., and Park, H. D., 1997, “Chaotic Dynamics of a Harmonically Excited Spring Pendulum System With Internal Resonance,” Nonlinear Dyn., 14(3), pp. 211–229.10.1023/A:1008256920441