Semiclassical calculations for the Gd 156 (p,d) reaction

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorRadi H.A.
dc.contributor.authorRasmussen J.O.
dc.contributor.authorDonangelo R.J.
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.otherFaculty of Engineering
dc.contributor.otherGiza
dc.contributor.otherEgypt; University of California at Berkeley
dc.contributor.otherLawrence Berkeley National Lab
dc.contributor.otherNuclear Science DivisionCA 94720
dc.contributor.otherUnited States; Instituto de Flsica
dc.contributor.otherFacultad de Ingenieria
dc.contributor.otherC.C. 30
dc.contributor.otherMontevideo
dc.contributor.otherC.P. 11000
dc.contributor.otherUruguay
dc.date.accessioned2020-01-09T20:41:18Z
dc.date.available2020-01-09T20:41:18Z
dc.date.issued2017
dc.descriptionScopus
dc.description.abstractNumerical semiclassical calculations are carried out to study the angular distribution of deuterons from the p,d pickup reaction of 25 MeV protons incident on the nucleus Gd156 and also its proton elastic scattering. It is found that, due to the rapid fall of the real optical potential in the vicinity of the target nucleus, the classical trajectories are very sensitive to the proton impact parameters. A selection of 276,983 trajectories is used for protons with impact parameters bp satisfying 7.23018fm?bp?10fm with steps of 10-5fm. Using the imaginary part of the optical potential for protons, a simple quantum approach is constructed to evaluate the probability of a surviving proton throughout its path. In addition, a simple three-body quantum approach is developed to calculate the probability of a neutron transfer by a surviving proton at closest approach. The formed deuteron is then allowed to start its trajectory while keeping its identity until detected. Throughout this journey, the deuteron trajectory is under the influence of its Coulomb and real optical potential, while its absorption is determined by the imaginary optical potential component. Within estimated uncertainties, the resulting theoretical angular distribution achieves a comparable fit with experimental results for the angular momentum transfer L=0 compared to other theoretical models, and concludes that the strong p,d cross sections are due to the dominant s1/2 component of the Nilsson 12+[400] level in Gd155. � 2017 American Physical Society.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100829284&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1103/PhysRevC.96.034602
dc.identifier.issn24699985
dc.identifier.otherhttps://doi.org/10.1103/PhysRevC.96.034602
dc.identifier.urihttps://cutt.ly/dr4i0Ba
dc.language.isoEnglishen_US
dc.publisherSpringer New York LLC
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofseriesPhysical Review C
dc.relation.ispartofseries96
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.titleSemiclassical calculations for the Gd 156 (p,d) reactionen_US
dc.typeArticleen_US
dcterms.isReferencedByRoss, T.J., (2012), Ph.D. thesis, University of Surrey; Ross, T.J., Beausang, C.W., Hughes, R.O., Allmond, J.M., Angell, C.T., Basunia, M.S., Bleuel, D.L., Escher, J.E., (2012) Phys. Rev. C, 85, p. 051304. , (R); Ross, T.J., Hughes, R.O., Beausang, C.W., Allmond, J.M., Angell, C.T., Basunia, M.S., Bleuel, D.L., Escher, J.E., (2013) Phys. Rev. C, 88, p. 031301. , (R); Ross, T.J., Hughes, R.O., Allmond, J.M., Beausang, C.W., Angell, C.T., Basunia, M.S., Bleuel, D.L., Escher, J.E., (2014) Phys. Rev. C, 90, p. 044323; Dietrich, F.S., Thompson, I.J., Kawano, T., (2012) Phys. Rev. C, 85, p. 044611; Chu, S.Y., Rasmussen, J.O., Stoyer, M.A., Canto, L.F., Donangelo, R., Ring, P., (1995) Phys. Rev. C, 52, p. 685; Chu, S.Y., Rasmussen, J.O., Stoyer, M.A., Ring, P., Canto, L.F., (1995) Phys. Rev. C, 52, p. 1407; Shihab-Eldin, A.A., Rasmussen, J.O., Stoyer, M.A., Burke, D.G., Garrett, P.E., (1995) Int. J. Mod. Phys. e, 4, p. 411; Radi, H.M.A., Mehrem, R.A., Rasmussen, J.O., (1989) Phys. Rev. C, 39, p. 1340; Allmond, J.M., Beausang, C.W., Rasmussen, J.O., Ross, T.J., Basunia, M.S., Bernstein, L.A., Bleuel, D.L., Burke, J.T., (2010) Phys. Rev. C, 81, p. 064316; Peter, D., DWUCK (Distorted Wave University of Colorado Kunz, , Kunz to calculate nuclear reaction cross sections numerically; Kiss, A., Mayer-Boricke, C., Rogge, M., Turek, P., Wiktor, S., (1987) J. Phys. G: Nucl. Phys., 13, p. 1067; Peter, D., CHUCK, A Coupled-channel Program Written, , Kunz to evaluate nuclear scattering amplitudes and differential collision cross sections; Thompson, I.J., (1988) Comput. Phys. Rep., 7, p. 167; Macfarlane, M.H., Pieper, S.C., (1978) PTOLEMY Is A Program Written, , compute nuclear elastic and direct-reaction cross sections for Heavy-Ion, Argonne National Laboratory, unpublished; Shadi, A., Bedoor, (2014) Ph.D. Dissertations, , Western Michigan University; FRESCO Is A Program Developed, , Ian Thompson over the period 1983-2006, to perform coupled-reaction channels calculations in nuclear physics; Myers, W.D., Schmidt, K.-H., (1983) Nucl. Phys. A, 410, p. 61; Utama, R., Chen, W., Piekarewicz, J., (2016) J. Phys. G: Nucl. Part. Phys., 43, p. 114002; Moller, P., Nix, J.R., Myers, W.D., Swiatecki, W.J., (1995) At. Data Nucl. Data Tables, 59, p. 185; Centelles, M., Roca-Maza, X., Vi�as, X., Warda, M., (2009) Phys. Rev. Lett., 102, p. 122502; Angeli, I., Marinova, K.P., (2013) At. Data Nucl. Data Tables, 99, p. 69; Antonov, A.N., Gaidarov, M.K., Sarriguren, P., Moya De Guerra, E., (2016) Phys. Rev. C, 94, p. 014319; De Vries, H., De Jager, C.W., De Vries, C., (1987) At. Data Nucl. Data Tables, 36, p. 495; Vautherin, D., (1973) Phys. Rev. C, 7, p. 296; Chamon, L.C., Nobre, G.P.A., Pereira, D., Rossi, E.S., Jr., Silva, C.P., Gasques, L.R., Carlson, B.V., (2004) Phys. Rev. C, 70, p. 014604; Chen, L., Ming Ko, C., Li, B., (2005) Phys. Rev. C, 72, p. 064309; Washiyama, K., Hagino, K., Dasgupta, M., (2006) Phys. Rev. C, 73, p. 034607; Perey, C.M., Perey, F.G., (1976) At. Data Nucl. Data Tables, 17, p. 1; Perey, C.M., Perey, F.G., (1963) Phys. Rev., 132, p. 755; De Shalit, A., Feshbach, H., (1974) Theoretical Nuclear Physics: Nuclear Structure, 1. , (John Wiley, New York); Marmier, P., Sheldon, E., (1970) Physics of Nuclei and Particles, 2. , (Academic Press, San Diego); Firestone, R.B., Frank Chu, S.Y., Baglin, C.M., (1999) Table of Isotopes, , 8th ed; B�cklin, A., Hedin, G., Fogelberg, B., Saraceno, M., Greenwood, R.C., Reich, C.W., Koch, H.R., Schult, O.W.B., (1982) Nucl. Phys. A, 380, p. 189; Ascuitto, R.J., Glendenning, N.K., (1969) Phys. Rev., 181, p. 1396; Ascuitto, R.J., Glendenning, N.K., (1970) Phys. Rev. C, 2, p. 415; Bondarenko, V., Afanasjev, A.V., Be?v�?, F., Honz�tkoc, J., Montero-Cabrera, M.-E., (2003) Nucl. Phys. A, 726, p. 175; Koning, A.J., Delaroche, J.P., (2003) Nucl. Phys. A, 713, p. 231; Nobre, G.P.A., Palumbo, A., Herman, M., Brown, D., Hoblit, S., Dietrich, F.S., (2015) Phys. Rev. C, 91, p. 024618; Wallner, A., Belgya, T., Bichler, M., Buczak, K., Dillmann, I., (2014) Phys. Rev. Lett., 112, p. 192501; Margerin, V., Lotay, G., Woods, P.J., Aliotta, M., Christian, G., (2015) Phys. Rev. Lett., 115, p. 062701; Deltuva, A., Ross, A., Norvai�as, E., Nunes, F.M., (2016) Phys. Rev. C, 94, p. 044613; Waldecker, S.J., Timofeyuk, N.K., (2016) Phys. Rev. C, 94, p. 034609; Ducasse, Q., Jurado, B., A�che, M., Marini, P., Mathieu, L., G�rgen, A., Guttormsen, M., Wilson, J.N., (2016) Phys. Rev. C, 94, p. 024614; Leach, K.G., Garrett, P.E., Ball, G.C., Bender, P.C., Bildstein, V., (2016) Phys. Rev. C, 94, p. 011304. , (R); Humby, P., Simon, A., Beausang, C.W., Allmond, J.M., Burke, J.T., Casperson, R.J., Chyzh, R., Hughes, R.O., (2016) Phys. Rev. C, 94, p. 064314; Nowak, K., Wimmer, K., Hellgartner, S., M�cher, D., Bildstein, V., (2016) Phys. Rev. C, 93, p. 044335; Macchiavelli, A.O., Crawford, H.L., Campbell, C.M., Clark, R.M., Cromaz, M., (2016) Phys. Rev. C, 94, p. 051303. , (R); Bailey, G.W., Timofeyuk, N.K., Tostevin, J.A., (2017) Phys. Rev. C, 95, p. 024603; L�vh�iden, G., Burke, D.G., (1975) Can. J. Phys., 53, p. 1182; Rekstad, J., Nordmoen, B., Henriques, A., Ingebretsen, F., Messelt, S., Thorsteinsen, T.F., Hammar�n, E., (1984) Nucl. Phys. A, 417, p. 376; Tveter, T.S., Guttormsen, M., Rekstad, J., Kownacki, J., Thorsteinsen, T.F., (1990) Nucl. Phys. A, 516, p. 1; Fujita, Y., Fujita, H., Adachi, T., Susoy, G., Algora, A., (2015) Phys. Rev. C, 91, p. 064316; Ganio?lu, E., Fujita, H., Rubio, B., Fujita, Y., Adachi, T., Algora, A., Csatl�s, M., Guess, C.J., (2016) Phys. Rev. C, 93, p. 064326; Frekers, D., Alanssari, M., Adachi, T., Cleveland, B.T., Dozono, M., Ejiri, H., Elliott, S.R., Fujiwara, M., (2016) Phys. Rev. C, 94, p. 014614
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
PhysRevC.96.034602.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format
Description: