Semiclassical calculations for the Gd 156 (p,d) reaction
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Radi H.A. | |
dc.contributor.author | Rasmussen J.O. | |
dc.contributor.author | Donangelo R.J. | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | Faculty of Engineering | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; University of California at Berkeley | |
dc.contributor.other | Lawrence Berkeley National Lab | |
dc.contributor.other | Nuclear Science DivisionCA 94720 | |
dc.contributor.other | United States; Instituto de Flsica | |
dc.contributor.other | Facultad de Ingenieria | |
dc.contributor.other | C.C. 30 | |
dc.contributor.other | Montevideo | |
dc.contributor.other | C.P. 11000 | |
dc.contributor.other | Uruguay | |
dc.date.accessioned | 2020-01-09T20:41:18Z | |
dc.date.available | 2020-01-09T20:41:18Z | |
dc.date.issued | 2017 | |
dc.description | Scopus | |
dc.description.abstract | Numerical semiclassical calculations are carried out to study the angular distribution of deuterons from the p,d pickup reaction of 25 MeV protons incident on the nucleus Gd156 and also its proton elastic scattering. It is found that, due to the rapid fall of the real optical potential in the vicinity of the target nucleus, the classical trajectories are very sensitive to the proton impact parameters. A selection of 276,983 trajectories is used for protons with impact parameters bp satisfying 7.23018fm?bp?10fm with steps of 10-5fm. Using the imaginary part of the optical potential for protons, a simple quantum approach is constructed to evaluate the probability of a surviving proton throughout its path. In addition, a simple three-body quantum approach is developed to calculate the probability of a neutron transfer by a surviving proton at closest approach. The formed deuteron is then allowed to start its trajectory while keeping its identity until detected. Throughout this journey, the deuteron trajectory is under the influence of its Coulomb and real optical potential, while its absorption is determined by the imaginary optical potential component. Within estimated uncertainties, the resulting theoretical angular distribution achieves a comparable fit with experimental results for the angular momentum transfer L=0 compared to other theoretical models, and concludes that the strong p,d cross sections are due to the dominant s1/2 component of the Nilsson 12+[400] level in Gd155. � 2017 American Physical Society. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=21100829284&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1103/PhysRevC.96.034602 | |
dc.identifier.issn | 24699985 | |
dc.identifier.other | https://doi.org/10.1103/PhysRevC.96.034602 | |
dc.identifier.uri | https://cutt.ly/dr4i0Ba | |
dc.language.iso | English | en_US |
dc.publisher | Springer New York LLC | |
dc.publisher | American Physical Society | en_US |
dc.relation.ispartofseries | Physical Review C | |
dc.relation.ispartofseries | 96 | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | University of Modern Sciences and Arts | |
dc.subject | MSA University | |
dc.title | Semiclassical calculations for the Gd 156 (p,d) reaction | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Ross, T.J., (2012), Ph.D. thesis, University of Surrey; Ross, T.J., Beausang, C.W., Hughes, R.O., Allmond, J.M., Angell, C.T., Basunia, M.S., Bleuel, D.L., Escher, J.E., (2012) Phys. Rev. C, 85, p. 051304. , (R); Ross, T.J., Hughes, R.O., Beausang, C.W., Allmond, J.M., Angell, C.T., Basunia, M.S., Bleuel, D.L., Escher, J.E., (2013) Phys. Rev. C, 88, p. 031301. , (R); Ross, T.J., Hughes, R.O., Allmond, J.M., Beausang, C.W., Angell, C.T., Basunia, M.S., Bleuel, D.L., Escher, J.E., (2014) Phys. Rev. C, 90, p. 044323; Dietrich, F.S., Thompson, I.J., Kawano, T., (2012) Phys. Rev. C, 85, p. 044611; Chu, S.Y., Rasmussen, J.O., Stoyer, M.A., Canto, L.F., Donangelo, R., Ring, P., (1995) Phys. Rev. C, 52, p. 685; Chu, S.Y., Rasmussen, J.O., Stoyer, M.A., Ring, P., Canto, L.F., (1995) Phys. Rev. C, 52, p. 1407; Shihab-Eldin, A.A., Rasmussen, J.O., Stoyer, M.A., Burke, D.G., Garrett, P.E., (1995) Int. J. Mod. Phys. e, 4, p. 411; Radi, H.M.A., Mehrem, R.A., Rasmussen, J.O., (1989) Phys. Rev. C, 39, p. 1340; Allmond, J.M., Beausang, C.W., Rasmussen, J.O., Ross, T.J., Basunia, M.S., Bernstein, L.A., Bleuel, D.L., Burke, J.T., (2010) Phys. Rev. C, 81, p. 064316; Peter, D., DWUCK (Distorted Wave University of Colorado Kunz, , Kunz to calculate nuclear reaction cross sections numerically; Kiss, A., Mayer-Boricke, C., Rogge, M., Turek, P., Wiktor, S., (1987) J. Phys. G: Nucl. Phys., 13, p. 1067; Peter, D., CHUCK, A Coupled-channel Program Written, , Kunz to evaluate nuclear scattering amplitudes and differential collision cross sections; Thompson, I.J., (1988) Comput. Phys. Rep., 7, p. 167; Macfarlane, M.H., Pieper, S.C., (1978) PTOLEMY Is A Program Written, , compute nuclear elastic and direct-reaction cross sections for Heavy-Ion, Argonne National Laboratory, unpublished; Shadi, A., Bedoor, (2014) Ph.D. Dissertations, , Western Michigan University; FRESCO Is A Program Developed, , Ian Thompson over the period 1983-2006, to perform coupled-reaction channels calculations in nuclear physics; Myers, W.D., Schmidt, K.-H., (1983) Nucl. Phys. A, 410, p. 61; Utama, R., Chen, W., Piekarewicz, J., (2016) J. Phys. G: Nucl. Part. Phys., 43, p. 114002; Moller, P., Nix, J.R., Myers, W.D., Swiatecki, W.J., (1995) At. Data Nucl. Data Tables, 59, p. 185; Centelles, M., Roca-Maza, X., Vi�as, X., Warda, M., (2009) Phys. Rev. Lett., 102, p. 122502; Angeli, I., Marinova, K.P., (2013) At. Data Nucl. Data Tables, 99, p. 69; Antonov, A.N., Gaidarov, M.K., Sarriguren, P., Moya De Guerra, E., (2016) Phys. Rev. C, 94, p. 014319; De Vries, H., De Jager, C.W., De Vries, C., (1987) At. Data Nucl. Data Tables, 36, p. 495; Vautherin, D., (1973) Phys. Rev. C, 7, p. 296; Chamon, L.C., Nobre, G.P.A., Pereira, D., Rossi, E.S., Jr., Silva, C.P., Gasques, L.R., Carlson, B.V., (2004) Phys. Rev. C, 70, p. 014604; Chen, L., Ming Ko, C., Li, B., (2005) Phys. Rev. C, 72, p. 064309; Washiyama, K., Hagino, K., Dasgupta, M., (2006) Phys. Rev. C, 73, p. 034607; Perey, C.M., Perey, F.G., (1976) At. Data Nucl. Data Tables, 17, p. 1; Perey, C.M., Perey, F.G., (1963) Phys. Rev., 132, p. 755; De Shalit, A., Feshbach, H., (1974) Theoretical Nuclear Physics: Nuclear Structure, 1. , (John Wiley, New York); Marmier, P., Sheldon, E., (1970) Physics of Nuclei and Particles, 2. , (Academic Press, San Diego); Firestone, R.B., Frank Chu, S.Y., Baglin, C.M., (1999) Table of Isotopes, , 8th ed; B�cklin, A., Hedin, G., Fogelberg, B., Saraceno, M., Greenwood, R.C., Reich, C.W., Koch, H.R., Schult, O.W.B., (1982) Nucl. Phys. A, 380, p. 189; Ascuitto, R.J., Glendenning, N.K., (1969) Phys. Rev., 181, p. 1396; Ascuitto, R.J., Glendenning, N.K., (1970) Phys. Rev. C, 2, p. 415; Bondarenko, V., Afanasjev, A.V., Be?v�?, F., Honz�tkoc, J., Montero-Cabrera, M.-E., (2003) Nucl. Phys. A, 726, p. 175; Koning, A.J., Delaroche, J.P., (2003) Nucl. Phys. A, 713, p. 231; Nobre, G.P.A., Palumbo, A., Herman, M., Brown, D., Hoblit, S., Dietrich, F.S., (2015) Phys. Rev. C, 91, p. 024618; Wallner, A., Belgya, T., Bichler, M., Buczak, K., Dillmann, I., (2014) Phys. Rev. Lett., 112, p. 192501; Margerin, V., Lotay, G., Woods, P.J., Aliotta, M., Christian, G., (2015) Phys. Rev. Lett., 115, p. 062701; Deltuva, A., Ross, A., Norvai�as, E., Nunes, F.M., (2016) Phys. Rev. C, 94, p. 044613; Waldecker, S.J., Timofeyuk, N.K., (2016) Phys. Rev. C, 94, p. 034609; Ducasse, Q., Jurado, B., A�che, M., Marini, P., Mathieu, L., G�rgen, A., Guttormsen, M., Wilson, J.N., (2016) Phys. Rev. C, 94, p. 024614; Leach, K.G., Garrett, P.E., Ball, G.C., Bender, P.C., Bildstein, V., (2016) Phys. Rev. C, 94, p. 011304. , (R); Humby, P., Simon, A., Beausang, C.W., Allmond, J.M., Burke, J.T., Casperson, R.J., Chyzh, R., Hughes, R.O., (2016) Phys. Rev. C, 94, p. 064314; Nowak, K., Wimmer, K., Hellgartner, S., M�cher, D., Bildstein, V., (2016) Phys. Rev. C, 93, p. 044335; Macchiavelli, A.O., Crawford, H.L., Campbell, C.M., Clark, R.M., Cromaz, M., (2016) Phys. Rev. C, 94, p. 051303. , (R); Bailey, G.W., Timofeyuk, N.K., Tostevin, J.A., (2017) Phys. Rev. C, 95, p. 024603; L�vh�iden, G., Burke, D.G., (1975) Can. J. Phys., 53, p. 1182; Rekstad, J., Nordmoen, B., Henriques, A., Ingebretsen, F., Messelt, S., Thorsteinsen, T.F., Hammar�n, E., (1984) Nucl. Phys. A, 417, p. 376; Tveter, T.S., Guttormsen, M., Rekstad, J., Kownacki, J., Thorsteinsen, T.F., (1990) Nucl. Phys. A, 516, p. 1; Fujita, Y., Fujita, H., Adachi, T., Susoy, G., Algora, A., (2015) Phys. Rev. C, 91, p. 064316; Ganio?lu, E., Fujita, H., Rubio, B., Fujita, Y., Adachi, T., Algora, A., Csatl�s, M., Guess, C.J., (2016) Phys. Rev. C, 93, p. 064326; Frekers, D., Alanssari, M., Adachi, T., Cleveland, B.T., Dozono, M., Ejiri, H., Elliott, S.R., Fujiwara, M., (2016) Phys. Rev. C, 94, p. 014614 | |
dcterms.source | Scopus |