An optimal fuzzy logic system for a nonlinear dynamic system using a fuzzy basis function

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorHussein S.K.
dc.contributor.authorSaleh M.H.
dc.contributor.otherDepartment of Communications and Electronics
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.otherGiza
dc.contributor.otherEgypt; Electrical Communication and Electronics Systems Engineering Department
dc.contributor.otherCanadian International College-CIC
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:41Z
dc.date.available2020-01-09T20:41:41Z
dc.date.issued2016
dc.descriptionScopus
dc.description.abstractThe impetus for this paper is the development of Fuzzy Basis Function "FBF" that assigns in an optimal fashion, a function approximation for a nonlinear dynamic system. A fuzzy basis function is applied to find the best location of the characteristic points by specifying the set of fuzzy rules. The advantage of this technique is that, it may produce a simple and well-performing system because it selects the most significant fuzzy basis functions to minimize an objective function in the output error for the fuzzy rules. The fuzzy basis function is a linguistic fuzzy IF_THEN rule. It provides a combination of the numerical information and the linguistic information in the form input-output pairs and in the form of fuzzy rules. The proposed control scheme is applied to a magnetic ball suspension system. � 2016, Academy and Industry Research Collaboration Center (AIRCC).en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100836264&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.5121/ijcnc.2016.8215
dc.identifier.issn9752293
dc.identifier.otherhttps://doi.org/10.5121/ijcnc.2016.8215
dc.identifier.urihttps://cutt.ly/ur4uUMV
dc.language.isoEnglishen_US
dc.publisherAcademy and Industry Research Collaboration Center (AIRCC)en_US
dc.relation.ispartofseriesInternational Journal of Computer Networks and Communications
dc.relation.ispartofseries8
dc.subjectFuzzy basis function "FBF"en_US
dc.subjectFuzzy logic control "FLC"en_US
dc.subjectOrthogonal least squares "OLS"en_US
dc.titleAn optimal fuzzy logic system for a nonlinear dynamic system using a fuzzy basis functionen_US
dc.typeArticleen_US
dcterms.isReferencedByZadah, L.A., Fuzzy Sets Versus Probability (1980) Proc.of the IEEE, 68 (3); Lee, C.C., Fuzzy Logic in Control Systems-Part-II (1990) IEEE Trans. On Systems, Man and Cybernetics, 20 (2); Zadah, L.A., Fuzzy Logic = Computing with Words (1996) IEEE Trans. On Fuzzy Systems, 4 (2); Ike, A., Kulkam, A., Veeresh, Load Frequency Control Using Fuzzy Logic Controller of Two Area Thermal-Power System (2012) International Journal ofEngineering Technology and Advanced Engineering, 2; Des, K., Des, P., Sharma, S., Load Frequency Control Using Classical Controller in an Isolated Single Area and Two Area Reheat Thermal Power Systems (2012) International Journal of Engineering Technology and Advanced Engineering, 2; Yamashita, K., Hirayasu, M., Okafujiand, K., Miyagi, H., A Design Method of Adaptive Load Frequency Control With Dual-Rate Sampling (1995) Int. Journal of Adaptive Control and Signal Processing, 9 (2); Saleh, M.H., Moniem, T.A., Fuzzy Logic Membership Implementation Using Optical Hardware Component (2012) Optics Communication, SciVerse, Science Direct.; Wang, L.-X., Mendel, J.M., Fuzzy Basis Functions, Universal Approximation and Orthogonal Least-Squares Learning (1992) IEEE Transactions on Neural Networks, 3 (5); Huaguang, Z., Gai, L., Bien, Z., A Fuzzy Basis Function Vector-Based Multivariable Adaptive Controller For Nonlinear Systems (2000) IEEE Transactions on Systems, Man, and Cybernetics, Part B, 30 (1); Zhihong, M., Yu, X.H., An adaptive Control Using Fuzzy Basis Function Expansions For a Class ofd Nonlinear Systems (1998) Journal of Intelligent and Robotics Systems, 21. , Kluwer Academic Publishers; Kim, H.M., Mendel, J.M., Fuzzy Basis Functions: Comparisons with Other Basis Functions (2002) IEEE Transactions on Computational Intelligence Society, 3 (1). , Issue,2; Chiang, H.K., Chu, C.T., Jhou, Y.T., Fuzzy Control With Fuzzy Basis Function Neural Network in Magnetic Bearing Systems (2012) IEEE Transactions on Neural Network.; Saleh, M.H., Elassal, A.H., Khalifa, I.H., Fuzzy Logic Controller for Multi-Area Load Frequency Control of Electric Power Systems (1996) The 6th. Conference on Computer and Applications, , IEEE Alex.Chapter, Alexandria, Egypt; Saleh, M.H., Elassal, A.H., Khalifa, I.H., An Adaptive Fuzzy Controller to Improve System Performance (1997) The 7th.Conference on Computer and Applications, , IEEE Alex.Chapter, Alexandria, Egypt; Kushawa, R., Wadhawani, S., Speed Control of Separately Excited DC Motor Using Fuzzy Logic Controller (2013) International Journal of Engineering Trends and Technology (IJETT), 4 (6); Saleh, M.H., Elassal, A.H., Khalifa, I.H., An Adaptive Fuzzy Control for Dynamically Interconnected Large-Scale Systems (1998) The 6th International Middle East Power System Conference "MEPCON'98 "Al-Mansoura University, , Al-Mansoura, Egypt; Saleh, M.H., Elassal, A.H., Khalifa, I.H., An Adaptive Fuzzy Controller to Improve System Performance (1997) The 7th.Conference on Computer and Applications, , IEEE Alex. Chapter, Alexandria, Egypt; Saleh, M.H., Moniem, T.A., A knowledge-based adaptive fuzzy controller for a twoareapower system (2013) International Journal of Knowledge-based and Intelligent Engineering, 219, pp. 219-222. , IOS Press; Husien, S.K., Saleh, M.H., A Fuzzy Logic Controller For A Two-Link Functional Manipulator (2014) International Journal of Computer Networks & Communications (IJCNC), 6 (6); Kuo, B.C., (1990) Automatic Control Systems, , Prentice Hall Inc; Khemisi, Y., Control Using Sliding Mode Of the Magnetic Suspension System (2010) International Journals of Electrical & Computer Science IJECS-IJENS, 10 (3); Venkatesh, P., Balamurgan, S., Real Time Control Of Magnetic Ball Suspension System UsingdSPACE DS1104"dSPACE (2014), User Conference 2014, India
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
An_Optimal_Fuzzy_Logic_System_for_a_Nonlinear_Dyna.pdf
Size:
175.42 KB
Format:
Adobe Portable Document Format
Description: