Performance enhancement of a proposed solar cell microstructure based on heavily doped silicon wafers

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorSalem M.S.
dc.contributor.authorZekry A.
dc.contributor.authorShaker A.
dc.contributor.authorAbouelatta M.
dc.contributor.authorAbdolkader T.M.
dc.contributor.otherDepartment of Electrical Communication and Electronics Systems Engineering
dc.contributor.otherFaculty of Engineering
dc.contributor.otherModern Science and Arts University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Computer Engineering
dc.contributor.otherComputer College
dc.contributor.otherHail University
dc.contributor.otherHail
dc.contributor.otherSaudi Arabia; Department of Electronics and Communications
dc.contributor.otherFaculty of Engineering
dc.contributor.otherAin Shams University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Engineering Physics and Mathematics Department
dc.contributor.otherFaculty of Engineering
dc.contributor.otherAin Shams University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Basic Engineering Sciences
dc.contributor.otherFaculty of Engineering
dc.contributor.otherBenha University
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:40Z
dc.date.available2020-01-09T20:40:40Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractThis paper aims to present a proposed npn solar cell microstructure based on low cost heavily doped Silicon wafers. The physical perception of the proposed structure is based on the idea of vertical generation and lateral collection of light generated carriers. It should be mentioned that our structure can be utilized whenever the diffusion length of photogenerated electron hole pairs is smaller than the penetration depth of the solar radiation. The enhancement in the structure performance is attained by the optimization of the structure technological and geometrical parameters and based on practical considerations. This enhancement enables achieving the maximum possible structure conversion efficiency. Moreover, the optical performance, in terms of the spectral response and external quantum efficiency, is presented. The optimization is carried out using SILVACO TCAD process and device simulators. The main parameters used in optimization include the thickness and doping of the top n + layer as well as the sidewall emitter. Additionally, the structure base width along with the notch depth are considered. Finally, back surface treatment is introduced. The structure conversion efficiency in the initial step before optimization was 10.7%. As a result of the optimization process, the structure conversion efficiency is improved to about 15% above the initial case study by 4%. � 2019 IOP Publishing Ltd.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=27191&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1088/1361-6641/ab0078
dc.identifier.doiPubMed ID :
dc.identifier.issn2681242
dc.identifier.otherhttps://doi.org/10.1088/1361-6641/ab0078
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/BJPrX
dc.language.isoEnglishen_US
dc.publisherInstitute of Physics Publishingen_US
dc.relation.ispartofseriesSemiconductor Science and Technology
dc.relation.ispartofseries34
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectUniversity for Modern Sciences and Arts
dc.subjectMSA University
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectconversion efficiencyen_US
dc.subjectheavily doped silicon wafersen_US
dc.subjectsolar cellen_US
dc.subjectTCADen_US
dc.subjectConversion efficiencyen_US
dc.subjectEfficiencyen_US
dc.subjectElectronic design automationen_US
dc.subjectGeometryen_US
dc.subjectMicrostructureen_US
dc.subjectShape optimizationen_US
dc.subjectSilicon solar cellsen_US
dc.subjectSolar cellsen_US
dc.subjectStructural optimizationen_US
dc.subjectSurface treatmenten_US
dc.subjectExternal quantum efficiencyen_US
dc.subjectHeavily doped siliconsen_US
dc.subjectLight-generated carriersen_US
dc.subjectPerformance enhancementsen_US
dc.subjectPhotogenerated electronsen_US
dc.subjectStructure conversionen_US
dc.subjectStructure performanceen_US
dc.subjectTCADen_US
dc.subjectSilicon wafersen_US
dc.titlePerformance enhancement of a proposed solar cell microstructure based on heavily doped silicon wafersen_US
dc.typeArticleen_US
dcterms.isReferencedBy(2015), http://www.itrpv.net/, ITRPV, International Technology Roadmap for Photovoltaic (ITRPV); Hochbaum, A.I., Yang, P., Semiconductor nanowires for energy conversion (2009) Chem. Rev., 110, pp. 527-546; Green, M.A., Solar cell efficiency tables (version 46) (2015) Prog. Photovolt., Res. Appl., 23, pp. 805-812; Staebler, D.L., Wronski, C.R., Reversible conductivity changes in discharge-produced amorphous Si (1977) Appl. Phys. Lett., 31, pp. 292-294; Amkreutz, D., Silicon thin-film solar cells on glass with open-circuit voltages above 620 mV formed by liquid-phase crystallization (2014) IEEE J. Photovolt., 4, pp. 1496-1501; Teplin, C.W., Comparison of thin epitaxial film silicon photovoltaics fabricated on monocrystalline and polycrystalline seed layers on glass (2015) Prog. Photovolt., Res. Appl., 23, pp. 909-917; Goodrich, A., A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs (2013) Sol. Energy Mater. Sol. Cells, 114, pp. 110-135; Kelzenberg, M.D., Single-nanowire Si solar cells (2008) 2008 33rd IEEE Photovoltaic Specialists Conf., pp. 1-6; Putnam, M.C., Si microwire-array solar cells (2010) Energy Environ. Sci., 3, pp. 1037-1041; Salem, M., Design and simulation of proposed low cost solar cell structures based on heavily doped silicon wafers (2017) 2017 IEEE 44th Photovoltaic Specialist Conf. (PVSC), pp. 1-5; https://silvaco.com/products/tcad/process_simulation/athena/athena.html, Athena; Zekry, A., The dependence of diffusion length, lifetime and emitter gummel-number on temperature and doping (1992) Arch. Elektrotech., 75, pp. 147-154; Palais, O., High resolution lifetime scan maps of silicon wafers (2000) Mater. Sci. Eng., 71, pp. 47-50; Cuevas, A., Macdonald, D., Measuring and interpreting the lifetime of silicon wafers (2004) Sol. Energy, 76, pp. 255-262; Alamo, J.D., Simultaneous measurement of hole lifetime, hole mobility and bandgap narrowing in heavily doped n-type silicon (1985) Electron Devices Meeting, 1985 Int., pp. 290-293; Del Alamo, J.A., Swanson, R.M., Modelling of minority-carrier transport in heavily doped silicon emitters (1987) Solid-State Electron., 30, pp. 1127-1136; https://silvaco.com/products/tcad/device_simulation/atlas/atlas.html, Atlas; Santbergen, R., Van Zolingen, R.C., The absorption factor of crystalline silicon PV cells: A numerical and experimental study (2008) Sol. Energy Mater. Sol. Cells, 92, pp. 432-444; Toor, F., 17.1%-efficient multi-scale-textured black silicon solar cells without dielectric antireflection coating (2011) Photovoltaic Specialists Conf. (PVSC), 2011 37th IEEE, pp. 000020-000024; Green, M.A., Keevers, M.J., Optical properties of intrinsic silicon at 300 K (1995) Prog. Photovolt., Res. Appl., 3, pp. 189-192; Gibson, J.H., (2018) UVB Radiation, Definition and Characteristics, , https://uvb.nrel.colostate.edu/UVB/publications/uvb_primer.pdf, Natural Resource Ecology Laboratory, Colorado State University; Luque, A., Hegedus, S., (2011) Handbook of Photovoltaic Science and Engineering, , (New York: Wiley); Small, C.E., High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells (2012) Nat. Photon., 6, p. 115; Kittidachachan, P., An analysis of a 'dead layer' in the emitter of n/sup+/pp/sup+/solar cells (2005) Photovoltaic Specialists Conf., 2005. Conf. Record of the 31st IEEE, pp. 1103-1106; Upstone, S.L., Ultraviolet/visible light absorption spectrophotometry in clinical chemistry (2006) Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, , (Hoboken, NJ: Wiley); Zekry, A., Shaker, A., Salem, M., Solar cells and arrays: Principles, analysis, and design (2018) Advances in Renewable Energies and Power Technologies, pp. 3-56. , (Amsterdam: Elsevier); Ghoneim, M.T., Hussain, M.M., Highly manufacturable deep (sub-millimeter) etching enabled high aspect ratio complex geometry lego-like silicon electronics (2017) Small, 13
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: