A fractional-order model of HIV infection: Numerical solution and comparisons with data of patients
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Arafa A.A.M. | |
dc.contributor.author | Rida S.Z. | |
dc.contributor.author | Khalil M. | |
dc.contributor.other | Department of Mathematics and Computer Science | |
dc.contributor.other | Faculty of Sciences | |
dc.contributor.other | Port Said University | |
dc.contributor.other | Port Said | |
dc.contributor.other | Egypt; Department of Mathematics | |
dc.contributor.other | Faculty of Sciences | |
dc.contributor.other | South Valley University | |
dc.contributor.other | Qena | |
dc.contributor.other | Egypt; Department of Mathematics | |
dc.contributor.other | Faculty of Engineering | |
dc.contributor.other | October University for Modern Sciences and Arts | |
dc.contributor.other | 6th Oct. City | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:42:18Z | |
dc.date.available | 2020-01-09T20:42:18Z | |
dc.date.issued | 2014 | |
dc.description | Scopus | |
dc.description | MSA Google Scholar | |
dc.description.abstract | In this paper, a fractional-order model which describes the human immunodeficiency type-1 virus (HIV-1) infection is presented. Numerical solutions are obtained using a generalized Euler method (GEM) to handle the fractional derivatives. The fractional derivatives are described in the Caputo sense. We show that the model established in this paper possesses non-negative solutions. Comparisons between the results of the fractional-order model, the results of the integer model and the measured real data obtained from 10 patients during primary HIV-1 infection are presented. These comparisons show that the results of the fractional-order model give predictions to the plasma virus load of the patients better than those of the integer model. � 2014 World Scientific Publishing Company. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=21100198432&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1142/S1793524514500363 | |
dc.identifier.issn | 17935245 | |
dc.identifier.other | https://doi.org/10.1142/S1793524514500363 | |
dc.identifier.uri | https://www.worldscientific.com/doi/abs/10.1142/S1793524514500363 | |
dc.language.iso | English | en_US |
dc.publisher | World Scientific Publishing Co. Pte Ltd | en_US |
dc.relation.ispartofseries | International Journal of Biomathematics | |
dc.relation.ispartofseries | 7 | |
dc.subject | Euler method | en_US |
dc.subject | Fractional calculus | en_US |
dc.subject | HIV model | en_US |
dc.subject | numerical results | en_US |
dc.title | A fractional-order model of HIV infection: Numerical solution and comparisons with data of patients | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Aini Abdullah, F., Md. Ismail, A.I., Simulations of the spread of the Hantavirus using fractional differential equations (2011) Matematika, 27, pp. 149-158; Ahmed, E., Elgazzar, A.S., On fractional-order differential equations model for nonlocal epidemics (2007) Physica A, 379, pp. 607-614; Ahmed, E., El-Saka, H.A., On fractional-order models for Hepatitis C (2010) Nonlinear Biomed. Phys., 4, p. 1; Arafa, A.A.M., Rida, S.Z., Khalil, M., Fractional order model of human T-cell lymphotropic virus i (HTLV-I) infection of CD4+T-cells (2011) Adv. Stud. Biol., 3, pp. 347-353; Arafa, A.A.M., Rida, S.Z., Khalil, M., Fractional modeling dynamics of HIV and CD4+T-cells during primary infection (2012) Nonlinear Biomed. Phys., 6, pp. 1-7; Arafa, A.A.M., Rida, S.Z., Khalil, M., The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional-order model (2013) Appl. Math. Model., 37, pp. 2189-2219; Ciupe, M.S., Bivort, B.L., Bortz, D.M., Nelson, P.W., Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models (2006) Math. Biosci., 200, pp. 1-27; Dalir, M., Bashour, M., Applications of fractional calculus (2010) Appl. Math. Sci., 4, pp. 1021-1032; Demirci, E., Unal, A., Ozalp, N., A fractional-order SEIR model with densitydependent death rate (2011) Hacet. J. Math. Stat., 40 (2), pp. 287-295; Deng, W., Smoothness and stability of the solutions for nonlinear fractional differential equations (2010) Nonlinear Anal., 72, pp. 1768-1777; Ding, Y., Yea, H., A fractional-order differential equation model of HIV infection of CD4+T-cells (2009) Math. Comput. Model., 50, pp. 386-392; El-Misiery, A.E.M., Ahmed, E., On a fractional model for earthquakes (2006) Appl. Comput. Math., 178, pp. 207-211; El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A., Numerical solution for multi-term fractional (arbitrary) orders differential equations (2004) Comput. Appl. Math., 23, pp. 33-54; El-Sayed, A.M.A., Rida, S.Z., Arafa, A.A.M., On the solutions of time-fractional bacterial chemotaxis in a diffusion gradient chamber (2009) Int. J. Nonlinear Sci., 7, pp. 485-492; Li, C.P., Zhang, F.R., A survey on the stability of fractional differential equations (2011) European Phys. J. Spec. Top., 193, pp. 27-47; Lin, W., Global existence theory and chaos control of fractional differential equations (2007) J. Math. Anal. Appl., 332, pp. 709-726; Nelson, P.W., Perelson, A.S., Mathematical analysis of delay differential equation models of HIV-1 infection (2002) Math. Biosci., 179, p. 73; Odibat, Z., Momani, S., An algorithm for the numerical solution of differential equations of fractional order (2008) J. Appl. Math. Inform., 26, pp. 15-27; Odibat, Z., Shawagfeh, N., Generalized Taylor's formula (2007) Appl. Math. Comput., 186, pp. 286-293; Pawelek, K.A., Liu, S., Pahlevani, F., Rong, L., A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data (2012) Math. Biosci., 235, pp. 98-109; Perelson, A.S., Modeling the interaction of the immune system with HIV (1989) Mathematical and Statistical Approaches to AIDS Epidemiology, 83, pp. 350-370. , ed. C. Castillo-Chavez, Lecture Notes in Biomathematics Springer, New York; Perelson, A.S., Essunger, P., Ho, D.D., Dynamics of HIV-1 and CD4+ lymphocytes in vivo (1997) AIDS, 11, pp. 17-24; Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D., HIV-1 dynamics in vivo: Virion clearance rate infected cell life-span, and viral generation time (1996) Science, 271, pp. 1582-1586; Petrovic, L.M., Spasic, D.T., Atanackovic, T.M., On a mathematical model of a human root dentin (2005) Dent. Mater., 21, pp. 125-128; Rong, L., Feng, Z., Perelson, A.S., Emergence of HIV-1 drug resistance during antiretroviral treatment (2007) Bull. Math. Biol., 69, pp. 2027-2060; Srivastava, P.K., Banerjee, M., Chandra, P., Modeling the drug therapy for HIV infection (2009) J. Biol. Syst., 17, pp. 213-223; Srivastava, P.K., Chandra, P., Modeling the dynamics of HIV and CD4+T-cells during primary infection (2010) Nonlinear Anal. Real World Appl., 11, pp. 612-618; Stafford, M.A., Corey, L., Cao, Y., Daar, E.S., Ho, D.D., Perelson, A.S., Modeling plasma virus concentration during primary HIV infection (2000) J. Theor. Biol., 203, pp. 285-301; Suat Ertrk, V., Odibat, Z.M., Momani, S., An approximate solution of a fractionalorder differential equation model of human T-cell lymphotropic virus i (HTLV-I) infection of CD4+T-cells (2011) Comput. Math. Appl., 62, pp. 996-1002; http://www.who.int/hiv/data/en/index.html, World Health Organization, HIV; (2012), http://www.who.int/gho/publications/worldhealthstatistics/2012/en/ | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: