Periodontal Tissue Engineering Around Dental Implants

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorMoussa R.M.
dc.contributor.authorYassin H.H.
dc.contributor.authorSaad M.M.
dc.contributor.authorNagy N.B.
dc.contributor.authorMarei M.K.
dc.contributor.otherRemovable Prosthodontics
dc.contributor.otherFaculty of Dentistry
dc.contributor.otherPharos University in Alexandria and Tissue Engineering Laboratories
dc.contributor.otherFaculty of Dentistry
dc.contributor.otherAlexandria University
dc.contributor.otherAlexandria
dc.contributor.otherEgypt; Oral Medicine and Periodontology
dc.contributor.otherFaculty of Dentistry
dc.contributor.otherMSA University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Pharos University in Alexandria and Tissue Engineering Laboratories
dc.contributor.otherFaculty of Dentistry Alexandria University
dc.contributor.otherAlexandria
dc.contributor.otherEgypt; Oral Biology Department
dc.contributor.otherFaculty of Dentistry
dc.contributor.otherTanta University and Tissue Engineering Laboratories
dc.contributor.otherFaculty of Dentistry Alexandria University
dc.contributor.otherAlexandria
dc.contributor.otherEgypt; Prosthodontics and Tissue Engineering Laboratories
dc.contributor.otherFaculty of Dentistry Alexandria
dc.contributor.otherAlexandria
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:42:00Z
dc.date.available2020-01-09T20:42:00Z
dc.date.issued2015
dc.descriptionScopus
dc.description.abstractThe past decade has witnessed the revolution in implant dentistry. Many strategies have been explored to improve the properties of osseointegration, mechanical and physical characteristics of implants, as well as surface topography and coatings to control cell behavior. In parallel the advent of periodontal tissue (PDL) engineering has opened a new area in periodontal regeneration. Bioengineered -cementum-like tissue and PDL-like tissue with well inserted Sharpey's fibers were demonstrated via cells, biomaterials, and growth factors. With this proof-of-concept, the value of developing tissue-engineered PDL around dental implants was highlighted. Currently, there is strong evidence supporting the fact that an implant with tissue-engineered PDL that mimics natural tooth environment will score over an osseointegration scenario, and become not only the actual path toward replacing the extracted tooth back into its original place, but also solving the problems of badly decaying tooth that can be replaced with a dental implant with natural attachment. In this chapter we spotlight the current evidence of growing PDL around dental implants. 2015 Elsevier Inc. All rights reserved.en_US
dc.identifier.doihttps://doi.org/10.1016/B978-0-12-397157-9.00060-6
dc.identifier.doiPubMed ID :
dc.identifier.isbn9780123977786; 9780123971579
dc.identifier.otherhttps://doi.org/10.1016/B978-0-12-397157-9.00060-6
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/6xxGB
dc.language.isoEnglishen_US
dc.publisherElsevier Inc.en_US
dc.relation.ispartofseriesStem Cell Biology and Tissue Engineering in Dental Sciences
dc.subjectGrowth factorsen_US
dc.subjectHydroxyapatiteen_US
dc.subjectImplantsen_US
dc.subjectMesenchymal stem cellsen_US
dc.subjectOsseointegrationen_US
dc.subjectPDLen_US
dc.subjectPDLSCsen_US
dc.subjectPolymer tubesen_US
dc.subjectScaffolden_US
dc.subjectSharpey's fibersen_US
dc.subjectCell cultureen_US
dc.subjectHydroxyapatiteen_US
dc.subjectPolymeric implantsen_US
dc.subjectScaffoldsen_US
dc.subjectScaffolds (biology)en_US
dc.subjectStem cellsen_US
dc.subjectSurface topographyen_US
dc.subjectTissueen_US
dc.subjectTissue regenerationen_US
dc.subjectGrowth factoren_US
dc.subjectMesenchymal stem cellen_US
dc.subjectOsseointegrationen_US
dc.subjectPDLSCsen_US
dc.subjectPolymer tubesen_US
dc.subjectDental prosthesesen_US
dc.titlePeriodontal Tissue Engineering Around Dental Implantsen_US
dc.typeBook Chapteren_US
dcterms.isReferencedByMisch, C.E., (2008) Contemporary implant dentistry: rationale for implants, , Mosby, St Louis, MO, 10th ed; Santander, S., Alcaine, C., Lyahyai, J., P�rez, M.A., Rodellar, C., Doblar�, M., In vitro osteoinduction of human mesenchymal stem cells in biomimetic surface modified titanium alloy implants (2012) Dent Mater J, 31 (5), pp. 843-850; Mendon�a, G., Mendona, D.B., Arago, F.J., Cooper, L.F., Advancing dental implant surface technology - from micron- to nanotopography. Review (2008) Biomaterials, 29 (28), pp. 3822-3835; Ten Cate, A.R., (2008) Oral histology, development, structure, and function, , Mosby, St. Louis, MO, 7th ed; Xiong, J., Mrozik, K., Gronthos, S., Bartold, P.M., Epithelial cell rests of Malassez contain unique stem cell populations capable of undergoing epithelial-mesenchymal transition (2012) Stem Cells Dev, 21 (11), pp. 2012-2025; Lambrichts, I., Creemers, J., Van Steenberghe, D., Periodontal neural endings intimately relate to epithelial rests of Malassez in humans. A light and electron microscope study (1993) J Anat, 182, pp. 153-162; Fujiyama, K., Yamashiro, T., Fukunaga, T., Balam, T.A., Zheng, L., Takano-Yamamoto, T., Denervation resulting in dento-alveolar ankylosis associated with decreased Malassez epithelium (2004) J Dent Res, 83 (8), pp. 625-629; Rincon, J.C., Young, W.G., Bartold, P.M., The epithelial cell rests of Malassez: a role in periodontal regeneration? (2006) J Periodontal Res, 41 (4), pp. 245-252; Lindskog, S., Bloml�f, L., Hammarstr�m, L., Evidence for a role of odontogenic epithelium in maintaining the periodontal space (1988) J Clin Periodontol, 15 (6), pp. 371-373; Fong, M.M., Darendeliler, M.A., Hunter, N., Shen, G., Epithelial cells in PDL are critical in resuming the integral relation between tooth root and supporting bone after trauma - a transplantation experiment (2007) Arch Oral Biol, 52 (2), pp. 182-188; Thesleff, I., Epithelial-mesenchymal signaling regulating tooth morphogenesis (2003) J Cell Sci, 116, pp. 1647-1648; Volponi, A.A., Pang, Y., Sharpe, P.T., Stem cell-based biological tooth repair and regeneration (2010) Trends Cell Biol, 20 (12), pp. 715-722; McCulloch, C.A., Lekic, P., McKee, M.D., Role of physical forces in regulating the form and function of the periodontal ligament (2000) Periodontol 2000, 24, pp. 56-72; Davies, J.E., Understanding peri-implant endosseous healing (2003) J Dent Educ, 67 (8), pp. 932-949; Isidor, F., Influence of forces on peri-implant bone (2006) Clin Oral Implants Res, 17, pp. 8-18; Kano, T., Yamamoto, R., Miyashita, A., Komatusu, K., Hayakawa, T., Sato, M., Regeneration of periodontal ligament for apatite-coated tooth shaped titanium implants with and without occlusion using rat molar model (2012) J Hard Tissue Biol, 21 (2), pp. 189-202; Chee, W., Jivraj, S., Failures in implant dentistry (2007) Br Dent J, 202 (3), pp. 123-129; Langer, R., Vacanti, J.P., Tissue engineering (1993) Science, 260 (5110), pp. 920-926; Bucci-Sabattini, V., Cassinelli, C., Coelho, P.G., Minnici, A., Trani, A., Dohan Ehrenfest, D.M., Effect of titanium implant surface nano-roughness and calcium phosphate low impregnation on bone cell activity in vitro (2010) Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 109 (2), pp. 217-224; Chen, F.M., Zhang, M., Wu, Z.F., Toward delivery of multiple growth factors in tissue engineering (2010) Biomaterials, 31 (24), pp. 6279-6308; Hakki, S.S., Hakki, E.E., Nohutcu, R.M., Regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by basic fibroblast growth factor and dexamethasone in periodontal ligament cells (2009) J Periodontal Res, 44 (6), pp. 794-802; Terashima, Y., Shimabukuro, Y., Terashima, H., Ozasa, M., Terakura, M., Ikezawa, K., Fibroblast growth factor-2 regulates expression of osteopontin in periodontal ligament cells (2008) J Cell Physiol, 216 (3), pp. 640-650; Murakami, S., Takayama, S., Kitamura, M., Shimabukuro, Y., Yanagi, K., Ikezawa, K., Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs (2003) J Periodontal Res, 38 (1), pp. 97-103; Fujita, T., Shiba, H., Van Dyke, T.E., Kurihara, H., Differential effects of growth factors and cytokines on the synthesis of SPARC, DNA, fibronectin and alkaline phosphatase activity in human periodontal ligament cells (2004) Cell Biol Int, 28 (4), pp. 281-286; Fujii, S., Maeda, H., Tomokiyo, A., Monnouchi, S., Hori, K., Wada, N., Effects of TGF-?1 on the proliferation and differentiation of human periodontal ligament cells and a human periodontal ligament stem/progenitor cell line (2010) Cell Tissue Res, 342 (2), pp. 233-242; Selvig, K.A., Sorensen, R.G., Wozney, J.M., Wikesjo, U.M.E., Bone repair following recombinant morphogenetic protein-2 stimulated periodontal regeneration (2002) J Periodontol, 73 (9), pp. 1020-1029; Dereka, X.E., Markopoulou, C.E., Mamalis, A., Vrotsos, I.A., Effect of rhBMP-7 combined with two bone grafts on human periodontal ligament cell differentiation (2009) Growth Factors, 27 (5), pp. 274-279; Rajshankar, D., McCulloch, C.A., Tenenbaum, H.C., Lekic, P.C., Osteogenic inhibition by rat periodontal ligament cells: modulation of bone morphogenic protein-7 activity in vivo (1998) Cell Tissue Res, 294 (3), pp. 475-483; Wolfman, N.M., Hattersley, G., Cox, K., Celeste, A.J., Nelson, R., Yamaji, N., Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-? gene family (1997) J Clin Invest, 100 (2), pp. 321-330; Wikesj, U.M., Sorensen, R.G., Kinoshita, A., Jian Li, X., Wozney, J.M., Periodontal repair in dogs: effect of recombinant human bone morphogenetic protein-12 (rhBMP-12) on regeneration of alveolar bone and periodontal attachment (2004) J Clin Periodontol, 31 (8), pp. 662-670; Kim, T.G., Wikesjo, U.M., Cho, K.S., Chai, J.K., Pippig, S.D., Siedler, M., Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 (rhgdf-5) in an absorbable collagen sponge carrier into one-wall intrabony defects in dogs: a dose-range study (2009) J Clin Periodontol, 36 (7), pp. 589-597; Tettamanti, G., Cattaneo, A.G., Gornati, R., de Eguileor, M., Bernardini, G., Binelli, G., Phylogenesis of brain-derived neurotrophic factor (BDNF) in vertebrates (2010) Gene, 450 (1-2), pp. 85-93; Tsuboi, Y., Nakanishi, T., Takano-Yamamoto, T., Miyamoto, M., Yamashiro, T., Takigawa, M., Mitogenic effects of neurotrophins on a periodontal ligament cell line (2001) J Dent Res, 80 (3), pp. 881-886; Takeda, K., Shiba, H., Mizuno, N., Hasegawa, N., Mouri, Y., Hirachi, A., Brain-derived neurotrophic factor enhances periodontal tissue regeneration (2005) Tissue Eng, 11 (9-10), pp. 1618-1629; Lee, C.H., Shah, B., Moioli, E.K., Mao, J.J., CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model (2010) J Clin Invest, 120 (9), pp. 3340-3349; Asano, M., Kubota, S., Nakanishi, T., Nishida, T., Yamaai, T., Yosimichi, G., Effect of connective tissue growth factor (CCN2/CTGF) on proliferation and differentiation of mouse periodontal ligament-derived cells (2005) J Cell Commun Signal, 5, pp. 3-11; Dangaria, S.J., Ito, Y., Walker, C., Druzinsky, R., Luan, X., Diekwisch, T.G.H., Extracellular matrix-mediated differentiation of periodontal progenitor cells (2009) Differentiation, 78 (2-3), pp. 79-90; Logan, C.Y., Nusse, R., The Wnt signaling pathway in development and disease (2004) Annu Rev Cell Dev Biol, 20, pp. 781-810; Bodine, P.V., Zhao, W., Kharode, Y.P., Bex, F.J., Lambert, A.J., Goad, M.B., The Wnt antagonist secreted frizzled related protein1 is a negative regulator of trabecular bone formation in adult mice (2004) Mol Endocrinol, 18 (5), pp. 1222-1237; Heo, J.S., Lee, S.Y., Lee, J.C., Wnt/?-catenin signaling enhances osteoblastogenic differentiation from human periodontal ligament fibroblasts (2010) Mol Cells, 30 (5), pp. 449-454; Ferrara, N., Davis-Smyth, T., The biology of vascular endothelial growth factor (1997) Endocr Rev, 18, pp. 4-25; Janssens, K., Ten Dijke, P., Janssens, S., Van Hul, W., Transforming growth factor-beta1 to the bone (2005) Endocr Rev, 26 (6), pp. 743-774; Hammarstrom, L., The role of enamel matrix proteins in the development of cementum and periodontal tissue (1997) Ciba Found Symp, 205, pp. 246-255; Carinci, F., Piattelli, A., Guida, L., Perrotti, V., Laino, G., Oliva, A., Effects of Emdogain on osteoblast gene expression (2006) Oral Dis, 12 (3), pp. 329-342; Heng, N.H., N'Guessan, P.D., Kleber, B.M., Bernimoulin, J.P., Pischon, N., Enamel matrix derivative induces connective tissue growth factor expression in human osteoblastic cells (2007) J Periodontol, 78 (12), pp. 2369-2379; Meirelles Lda, S., Nardi, N.B., Methodology, biology and clinical applications of mesenchymal stem cells (2009) Front Biosci, 14, pp. 4281-4298; Seo, B.M., Miure, M., Gronthos, S., Bartold, P.M., Batouli, S., Brahim, J., Investigation of multipotent postnatal stem cells from human periodontal ligament (2004) Lancet, 364 (9429), pp. 149-155; Gay, I.C., Chen, S., MacDougall, M., Isolation and characterization of multipotent human periodontal ligament stem cells (2007) Orthod Craniofac Res, 10 (3), pp. 149-160; Park, J.-C., Kim, J.-M., Jung, I.-H., Kim, J.C., Choi, S.H., Cho, K.S., Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from inflamed PDL tissue: in vitro and in vivo evaluation (2011) J Clin Periodontol, 38 (8), pp. 721-731; Itaya, T., Kagami, H., Okada, K., Yamawaki, A., Narita, Y., Inoue, M., Characteristic changes of periodontal ligament-derived cells during passage (2009) J Periodontal Res, 44 (4), pp. 425-433; Huang, G.T.-J., Gronthos, S., Shi, S., Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine (2009) J Dent Res, 88 (9), pp. 792-806; Marei, M.K., Saad, M.M., El-Ashwah, A.M., El-Bakly, R.M., Al-Khodary, M.A., Experimental formation of periodontal structure around titanium implants utilizing bone marrow stem cells: a pilot study (2009) J Oral Implantol, 35 (3), pp. 106-129; Taboas, J.M., Maddox, R.D., Krebsbach, P.H., Hollister, S.J., Indirect solid free form fabrication of local and global porous, biomimetic and composite 3-D polymer-ceramic scaffolds (2003) Biomaterials, 24 (1), pp. 181-194; Spalazzi, J.P., Dagher, E., Doty, S.B., Guo, X.E., Rodeo, S.A., Lu, H.H., In vivo evaluation of a multi phased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration (2008) J Biomed Mater Res A, 86 (1), pp. 1-12; Wang, Y., Xia, H., Zhao, Y., Jiang, T., Three-dimensional culture of human periodontal ligament cells on highly porous polyglycolic acid scaffolds in vitro (2005) Conf Proc IEEE Eng Med Biol Soc, 5, pp. 4908-4911; Park, C.H., Rios, H.F., Jin, Q., Bland, M.E., Flanagan, C.L., Hollister, S.J., Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces (2010) Biomaterials, 31 (23), pp. 5945-5952; Vaquette, C., Fan, W., Xiao, Y., Hamlet, S., Hutmacher, D.W., Ivanovski, S., Biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex (2012) Biomaterials, 33 (22), pp. 5560-5573; Schwartz, Z., Lohmann, C.H., Oefinger, J., Bonewald, L.F., Dean, D.D., Boyan, B.D., Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage (1999) Adv Dent Res, 13, pp. 38-48; Sammons, R.L., Lumbikanonda, N., Gross, M., Cantzler, P., Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behavior in an explant model of osseointegration: a scanning electron microscopic study (2005) Clin Oral Implants Res, 16 (6), pp. 657-666; Luo, X.T., Gao, Z., Yan, S.G., Deng, W., Zhang, W.S., Yan, W.Q., Functional behavior of human periodontal ligament cells around various dental implants (2007) Key Eng Mater, pp. 837-840; Gao, Z., Luo, X., Biological effect of titanium's surface roughness on periodontal ligament cells. Bioinform Biomed Eng 2009 3rd International Conference., pp. 1-4; Heo, Y.-Y., Um, S., Kim, S.-K., Park, J.-M., Seo, B.M., Responses of periodontal ligament stem cells on various titanium surfaces (2011) Oral Dis, 17 (3), pp. 320-327; Kadoa, T., Hidakaa, T., Aitab, H., Endoc, K., Furuichia, Y., Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells (2012) Appl Surface Sci, 262, pp. 240-247; Hakki, S.S., Korkusuz, P., Purali, N., Korkusuz, F., Bozkurt, B.S., Hakki, E.E., Periodontal ligament cell behavior on different titanium surfaces (2013) Acta Odontol Scand, 71 (3-4), pp. 906-916; Buser, D., Warrer, K., Karring, T., Formation of a periodontal ligament around titanium implants (1990) J Periodontol, 61 (9), pp. 597-601; Buser, D., Warrer, K., Karring, T., Stich, H., Titanium implants with a true periodontal ligament: an alternative to osseointegrated implants? (1990) Int J Oral Maxillofac Implants, 5 (2), pp. 113-116; Warrer, K., Karring, T., Gotfredsen, K., Periodontal ligament formation around different types of dental titanium implants. I. The self-tapping screw type implant system (1993) J Periodontol, 64 (1), pp. 29-34; Choi, B.H., Periodontal ligament formation around titanium implants using cultured periodontal ligament cells: a pilot study (2000) Int J Oral Maxillofac Implants, 15 (2), pp. 193-196; Jahangiri, L., Hessamfar, R., Ricci, J.L., Partial generation of periodontal ligament on endosseous dental implants in dogs (2005) Clin Oral Implants Res, 16 (4), pp. 396-401; Parlar, A., Bosshardt, D.D., Unsal, B., Cetiner, D., Haytac, C., Lang, N.P., New formation of periodontal tissues around titanium implants in a novel dentin chamber model (2005) Clin Oral Implants Res, 16 (3), pp. 259-267; Yang, Z.-H., Zhang, X.-J., Dang, N.-N., Ma, Z.-F., Xu, L., Wu, J.-J., Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/ periodontal ligament-like tissues (2009) J Periodontal Res, 44 (2), pp. 199-210; Gault, P., Black, A., Romette, J.L., Fuente, F., Schroeder, K., Thillou, F., Tissue-engineered ligament: implant constructs for tooth replacement (2010) J Clin Periodontol, 37 (8), pp. 750-758; Lin, Y., Gallucci, G.O., Buser, D., Bosshardt, D., Belser, U.C., Yelick, P.C., Bioengineered periodontal tissue formed on titanium dental implants (2011) J Dent Res, 90 (2), pp. 251-256
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description: