Path Deviation Equations in AP-Geometry
Date
2005
Authors
Journal Title
Journal ISSN
Volume Title
Type
Article
Publisher
arXiv.org e-Print archive
Series Info
The Tenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (In 3 Volumes);
;In 3 Volumes Pages: 1440-1445
;In 3 Volumes Pages: 1440-1445
Doi
Scientific Journal Rankings
Abstract
Recently, it has been shown that Absolute Parallelism (AP) geometry admits
paths that are naturally quantized. These paths have been used to describe the
motion of spinning particles in a background gravitational field. In case of a weak
static gravitational field limits, the paths are applied successfully to interpret the
discrepancy in the motion of thermal neutrons in the Earth’s gravitational field
(COW-experiment). The aim of the present work is to explore the properties of
the deviation equations corresponding to these paths. In the present work the
deviation equations are derived and compared to the geodesic deviation equation of
the Riemannian geometry.
Description
MSA Google Scholar
Keywords
University of Path Deviation
Citation
[1] Wanas, M.I. and Bakry, M.A. (1995) Astrophys. Space Sci., 228, 239. [2] Gurzadyan, V.G. (2003) Talk at XXII Solvey Conference on Physics (Delphi, Nov.24-29,2001); astro-ph/0312523. [3] Bazanski, S.L. (1989) J. Math. Phys., 30, 1018. [4] Wanas, M.I. (2001) Stud. Cercet. S¸tiint¸. Ser. Mat. Univ. Bac˘au 10,297; gr-qc/0209050. [5] Wanas, M.I., Melek, M. and Kahil, M.E. (1995) Astrophys. Space Sci., 228, 5 273; gr-qc/0207113. [6] Wanas, M.I. and Kahil, M.E. (1999) Gen. Rel. Grav., 31, 1921; gr-qc/9912007. [7] Wanas, M.I. (2003) Algebras, Groups and Geometries, 20, 345a. [8] Wanas, M.I. (1998) Astrophys. Space Sci., 258, 237; gr-qc/9904019. [9] Wanas, M.I., Melek, M. and Kahil, M.E. (2000) Gravit. Cosmol., 6, 319; gr-qc/9812085. [10] Sousa, A.A. and Maluf, J.W. (2004) Gen. Rel. Grav., 36, 967; gr-qc/0301131. [11] Wanas, M.I., Melek, M. and Kahil, M.E. (2002) Proc. MG IX, p.1100, Eds. V.G. Gurzadyan et al. (World Scientific Pub.); gr-qc/0306086. [12] Wanas, M.I. (2003) Gravit. Cosmol., 9, 109.