A Wearable Dual-Band Low Profile High Gain Low SAR Antenna AMC-Backed for WBAN Applications

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorAbdalla, Mahmoud A.
dc.contributor.authorEl Atrash, Mohamed
dc.contributor.authorElhennawy, Hadia M
dc.date.accessioned2019-10-25T10:24:40Z
dc.date.available2019-10-25T10:24:40Z
dc.date.issued2019-10
dc.description.abstractA dual-band, low profile, high gain, and low specific absorption rate (SAR) triangular slotted monopole antenna backed with a artificial magnetic conductor (AMC) array is presented for wireless body area network (WBAN) applications. The antenna is printed on a Rogers ULTRALAM 3850 substrate, whereas the AMC array is printed on a RO3003 substrate. The design operates at 3.5 GHz, for WiMAX wireless applications, and at 5.8 GHz for the ISM Band. The proposed antenna preserved the dual-band resonance and exhibited acceptable gain and SAR at a separation of 15 mm from the human body model. To reduce such separation and achieve enhancements to gain and SAR, an AMC array was utilized. In free space, gain enhancements by 6.8 and 3.7 dBi were achieved at both frequencies, respectively. Furthermore, over a gap of 1 mm from the human body, gain enhancements by 23.3 and 13.9 dBi …en_US
dc.identifier.citation. P. S. Hall, Y. Hao, Antennas and Propagation for Body-Centric Wireless Communications, Norwood, MA, USA:Artech House, 2012. Show Context Google Scholar 2. G. A. Conway, W. G. Scanlon, "Antennas for over-body-surface communication at 2.45 GHz", IEEE Trans. Antennas Propag., vol. 57, no. 4, pp. 844-855, Apr. 2009. Show Context View Article Full Text: PDF (2331KB) Google Scholar 3. L. A. Y. Poffelie, P. J. Soh, S. Yan, G. A. E. Vandenbosch, "A high-fidelity all-textile UWB antenna with low back radiation for off-body WBAN applications", IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 757-760, Feb. 2016. Show Context View Article Full Text: PDF (990KB) Google Scholar 4. S. Yan, P. J. Soh, G. A. E. Vandenbosch, "Compact all-textile dual-band antenna loaded with metamaterial-inspired structure", IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1486-1489, 2015. Show Context View Article Full Text: PDF (854KB) Google Scholar 5. A. Y. I. Ashyap et al., "Compact and low-profile textile EBG-based antenna for wearable medical applications", IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2550-2553, 2017. Show Context View Article Full Text: PDF (792KB) Google Scholar 6. S. Yan, P. J. Soh, G. A. E. Vandenbosch, "Low-profile dual-band textile antenna with artificial magnetic conductor plane", IEEE Trans. Antennas Propag., vol. 62, no. 12, pp. 6487-6490, Dec. 2014. Show Context View Article Full Text: PDF (777KB) Google Scholar 7. S. Velan et al., "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications", IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 249-252, 2015. Show Context View Article Full Text: PDF (1092KB) Google Scholar 8. A. Alemaryeen, S. Noghanian, "Crumpling effects and specific absorption rates of flexible AMC integrated antennas", IET Microw. Antennas Propag., vol. 12, no. 4, pp. 627-635, Mar. 2018. Show Context View Article Full Text: PDF (3663KB) Google Scholar 9. S. Zhu, R. Langley, "Dual-band wearable textile antenna on an EBG substrate", IEEE Trans. Antennas Propag., vol. 57, no. 4, pp. 926-935, Apr. 2009. Show Context View Article Full Text: PDF (1385KB) Google Scholar 10. Z. Hamouda, J.-L. Wojkiewicz, A. A. Pud, L. Kone, S. Bergheul, T. Lasri, "Flexible UWB organic antenna for wearable technologies application", IET Microw. Antennas Propag., vol. 12, no. 2, pp. 160-166, Jul. 2018. Show Context View Article Full Text: PDF (6435KB) Google Scholar 11. S. M. Saeed, C. A. Balanis, C. R. Birtcher, A. C. Durgun, H. N. Shaman, "Wearable flexible reconfigurable antenna integrated with artificial magnetic conductor", IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2396-2399, 2017. Show Context View Article Full Text: PDF (610KB) Google Scholar 12. Z. H. Jiang, Z. Cui, T. Yue, Y. Zhu, D. H. Werner, "Compact highly efficient and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body-area networks", IEEE Trans. Biomed. Circuits Syst, vol. 11, no. 4, pp. 920-932, Aug. 2017. Show Context View Article Full Text: PDF (1725KB) Google Scholar 13. M. A. B. Abbasi, S. S. Nikolaou, M. A. Antoniades, M. N. Stevanović, P. Vryonides, "Compact EBG-backed planar monopole for BAN wearable applications", IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 453-463, Feb. 2017. Show Context View Article Full Text: PDF (2860KB) Google Scholar 14. Z. H. Jiang, D. E. Brocker, P. E. Sieber, D. H. Werner, "A compact low-profile metasurface-enabled antenna for wearable medical body-area network devices", IEEE Trans. Antennas Propag., vol. 62, no. 8, pp. 4021-4030, Aug. 2014. Show Context View Article Full Text: PDF (1836KB) Google Scholar 15. H. R. Raa, A. I. Abbosh, H. M. Al-Rizzo, D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications", IEEE Trans. Antennas Propag., vol. 61, no. 2, pp. 524-531, Feb. 2013. Show Context View Article Full Text: PDF (1323KB) Google Scholar 16. S. Genovesi, F. Costa, F. Fanciulli, A. Monorchio, "Wearable inkjet-printed Wideband antenna by using miniaturized AMC for sub-GHz applications", IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1927-1930, 2016. Show Context View Article Full Text: PDF (1326KB) Google Scholar 17. O. F. Abdalgalil, M. El Atrash, M. A. Abdalla, "A flexible high gain wide-band antenna for Wireless and wearable applications", Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, pp. 1279-1280, Jul. 2018. Show Context View Article Full Text: PDF (879KB) Google Scholar 18. M. Kadry, M. El Atrash, M. A. Abdalla, "Design of an ultra-thin compact flexible dual-band antenna for wearable applications", Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, pp. 1949-1950, Jul. 2018. Show Context View Article Full Text: PDF (887KB) Google Scholar 19. S. R. Zahran, M. A. Abdalla, A. Gaafar, "Time domain analysis for foldable thin UWB monopole antenna", AEU-Int. J. Electron. Commun., vol. 83, pp. 253-262, Jan. 2018. Show Context CrossRef Google Scholar 20. B. S. Abirami, E. F. Sundarsingh, "EBG-backed flexible printed Yagi–Uda antenna for on-body communication", IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3762-3765, Jul. 2017. Show Context View Article Full Text: PDF (1348KB) Google Scholar 21. S. Kim, Y.-J. Ren, H. Lee, A. Rida, S. Nikolaou, M. M. Tentzeris, "Monopole antenna with inkjet-printed EBG array on paper substrate for wearable applications", IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 663-666, 2012. Show Context View Article Full Text: PDF (637KB) Google Scholar 22. B. S. Cook, A. Shamim, "Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate", IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 76-79, 2013. Show Context View Article Full Text: PDF (800KB) Google Scholar 23. K. Agarwal, Y.-X. Guo, B. Salam, "Wearable AMC backed near-endfire antenna for on-body communications on latex substrate", IEEE Trans. Compon. Packag. Manuf. Technol., vol. 6, no. 3, pp. 346-358, Mar. 2016. Show Context View Article Full Text: PDF (4270KB) Google Scholar 24. Y.-S. Chen, T.-Y. Ku, "A low-profile wearable antenna using a miniature high impedance surface for smartwatch applications", IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1144-1147, 2016. Show Context View Article Full Text: PDF (1086KB) Google Scholar 25. X. Y. Liu, Y. Di, H. Liu, Z. T. Wu, M. M. Tentzeris, "A planar windmill-like broadband antenna equipped with artificial magnetic conductor for off-body communications", IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 64-67, 2016. Show Context View Article Full Text: PDF (861KB) Google Scholar 26. K. S. Sultan, H. H. Abdullah, E. A. Abdallah, E. A. Hashish, "Low-SAR miniaturized printed antenna for mobile ISM and WLAN services", IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1106-1109, 2013. Show Context View Article Full Text: PDF (1091KB) Google Scholar 27. M. R. I. Faruque, M. I. Hossain, M. T. Islam, "Low specific absorption rate microstrip patch antenna for cellular phone applications", IET Microw. Antennas Propag., vol. 9, no. 14, pp. 1540-1546, Nov. 2015. Show Context View Article Full Text: PDF (1006KB) Google Scholar 28. R. B. V. B. Simorangkir, A. Kiourti, K. P. Esselle, "UWB wearable antenna with a full ground plane based on PDMS-embedded conductive fabric", IEEE Antennas Wireless Propag. Lett., vol. 17, no. 3, pp. 493-496, Mar. 2018. Show Context View Article Full Text: PDF (1247KB) Google Scholar 29. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band", IEEE Trans. Microw. Theory Techn., vol. 47, no. 11, pp. 2059-2074, Nov. 1999. Show Context View Article Full Text: PDF (405KB) Google Scholar 30. D. M. N. Elsheakh, A. M. Soliman, E. A. Abdallah, "Low specific absorption rate hexa-band coplanar waveguide-fed planar inverted-F antenna with independent resonant frequency control for wireless communication applications", IET Microw. Antennas Propag., vol. 8, no. 4, pp. 207-216, Mar. 2014. Show Context Google Scholar 31. R. Augustine, T. Alves, T. Sarrebourse, B. Poussot, K. T. Mathew, J.-M. Laheurte, "Polymeric ferrite sheets for SAR reduction of wearable antennas", Electron. Lett., vol. 46, no. 3, pp. 197-198, Feb. 2010. Show Context View Article Full Text: PDF (201KB) Google Scholar 32. Dielectric Properties of Body Tissues, Jun. 2018, [online] Available: http://niremf.ifac.cnr.it/tissprop/. Show Context Google Scholar 33. Body Tissue Dielectric Parameters, Jun. 2018, [online] Available: https://www.fcc.gov/general/body-tissue-dielectric-parameters. Show Context Google Scholar 34. Density and Mass of Each Organ Tissue, Jun. 2018, [online] Available: http://bionumbers.hms.harvard.edu/bionumber.aspx?id=110245. Show Context Google Scholar 35. R. J. Langley, E. A. Parker, "Double-square frequency-selective surfaces and their equivalent circuit", Electron. Lett., vol. 19, no. 18, pp. 675-677, Aug. 1983. Show Context View Article Full Text: PDF (365KB) Google Scholar 36. Y. Yao, X. Wang, Z. Feng, "A novel dual-band compact electromagnetic bandgap (EBG) structure and its application in multi-antennas", Proc. IEEE Int. Symp. Antennas Propag., pp. 1943-1946, Jul. 2006.en_US
dc.identifier.doihttps://doi.org/10.1109/TAP.2019.2923058
dc.identifier.otherhttps://doi.org/10.1109/TAP.2019.2923058
dc.identifier.urihttps://ieeexplore.ieee.org/abstract/document/8742786
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.ispartofseriesIEEE Transactions on Antennas and Propagation;VOL 67 ISSUE 10
dc.subjectwearable antennaen_US
dc.subjectmedical applicationsen_US
dc.subjectdual-band artificial magnetic conductoren_US
dc.subjectBiomedical monitoringen_US
dc.subjectWireless communicationen_US
dc.subjectAntenna measurementen_US
dc.subjectwearable antennaen_US
dc.subjectAntennasen_US
dc.titleA Wearable Dual-Band Low Profile High Gain Low SAR Antenna AMC-Backed for WBAN Applicationsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: