Browsing by Author "Bokhari, Awais"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Cleaner and Sustainable Synthesis of High Quality Monoglycerides by use of Enzyme Technologies: Techno-economic and Environmental study for Monolaurin(2022-09) Mustafa, Ahmad; Fathy, Sara; Kutlu, Ozben; Niikura, Fumiya; Inayat, Abrar; Mustafa, Muhammad; Abdellatie, Tamer M.M.; Bokhari, Awais; Samuel, David; Pastore, Carlo; Bitonto, Luigi; Mohsen, RehamCurrently, monoglycerides (MG) are produced using a complicated energy intensive technology that contributes negatively toward greenhouse gas mitigation. This work suggests a cleaner and simpler one-step enzymatic production of α-monolaurin in an inert membrane reactor, where the reaction and enzyme separation are conducted simultaneously in one unit. Candida antarctica lipase (Lipozyme 435) was used to catalyze the esterification reaction between lauric acid and glycerin in a solvent-free system under mild temperatures. Response surface methodology was used to optimize the reaction conditions. The optimal conditions were a molecular sieve of 14.85% w/w, a temperature of 56.95°C, an enzyme amount of 5.38% w/w, and a molar ratio of 4.75% w/w. The gas chromatography (GC) analysis showed that the α-monolaurin percentage was 49.5% when the enzymatic process (ENZ) was used. The conventional chemical (CHEM) and autocatalytic (AUT) esterification methods were also performed to study their proportional MG yields. The GC results showed the MG percentages of 43.9% and 41.7% for CHEM and AUT, respectively. Economic analysis was also conducted for the suggested enzymatic technique, and the findings were compared with those of the CHEM and AUT technologies. Using a plant capacity of 4950 t/year and 11% interest for the proposed ENZ process, the total capital investment of α-monolaurin production was preferably four times less than that of the CHEM process and three times less than that of the AUT method, presenting investment possibilities. However, the ENZ process showed the least profitability (net profit per day) among the three processes. Nevertheless, the return on investment and net present value for the ENZ process were preferably higher than those of CHEM and AUT because of its interestingly lower inside battery limit plant cost and less energy consumption. The AUT/CHEM processes generated a total carbon dioxide (CO2 ) exhaust of t CO2 678.7 eq./year. In contrast, the ENZ process exhausted a total CO2 of only 50 t CO2 eq./year. The present integrated techno-economic and environmental study of α-monolaurin production emphasizes the green and cost benefits of the proposed ENZ technology.Item Eco-friendly isopropyl myristate production in a fixed bed reactor: Leveraging energy-saving enzymatic techniques with a comprehensive evaluation of techno-economic feasibility(Elsevier Ltd, 2024-06) Mustafa, Ahmad; Sadek, M. Shaaban; Abou Taleb, Manal F; Munir, Mamoona; Kutlu, Ozben; Pastore, Carlo; Bitonto, Luigi di; Faisal, Shah; Hammad, Hossam; Ibrahim, Mohamed M; Abdellatief, Tamer M.M; Bokhari, Awais; Samuel, Olusegun David; Inayat, Abrar; El-Bahy, Zeinhom MThis study aims to develop a straightforward, eco-friendly, and energy-saving approach for producing isopropyl myristate (IPM) through lipase-catalyzed esterification in a fixed bed reactor. The reaction between isopropyl alcohol and myristic acid was catalyzed using Novozym 435. Response Surface Methodology (RSM) was utilized to examine the interaction of various reaction parameters on the yield of IPM. The highest observed and predicted conversion rates were 95 % and 94.2 %, respectively. The optimum conditions included a molar ratio of isopropyl alcohol to myristic acid of 15:1, a time of 12 h, and a flow rate of 1.25 ml/min. The synthesized IPM was isolated and comprehensively characterized using GC–MS, FTIR, 1H, and 13C NMR techniques. To further validate the applicability of this method, a Process Simulation Diagram (PSD) was developed using ASPEN PLUS software to simulate IPM production under the optimized conditions. Economic analysis revealed a positive net present value (NPV) of $169,664,820.33 and a return on investment (ROI) of 536.52 %, indicating that this sustainable approach offers low investment risks and high profitability.Item Has the time finally come for green oleochemicals and biodiesel production using large-scale enzyme technologies? Current status and new developments(Elsevier Inc., 2023-10) Mustafa, Ahmad; Faisal, Shah; Ahmed, Inas A; Munir, Mamoona; Cipolatti, Eliane Pereira; Manoel, Evelin Andrade; Pastore, Carlo; di Bitonto, Luigi; Hanelt, Dieter; Nitbani, Febri Odel; El-Bahy, Zeinhom M; Inayat, Abrar; Abdellatief, Tamer M.M; Tonova, Konstantza; Bokhari, Awais; Abomohra, AbdelfatahWith the growth of the chemical industry over the last decade, the need for cheaper (and more environmentally friendly) alternatives to petrochemicals of ever-increasing cost has grown steadily. Oleochemicals and biodiesel (OC/BD) are considered as green alternatives to petroleum derivatives, because they come from renewable oils and fats. OC/BD are currently produced by the traditional energy intensive chemical catalyzed methods, which have several economic and environmental drawbacks. For these reasons, the enzymatic production of OC/BD has attracted a growing attention for their greener pathway with respect to the chemically catalyzed processes. Lipase-catalyzed processes have a low energy requirement, since reactions are performed under atmospheric pressure and mild temperature and without the creation of side reactions. Furthermore, utilization of enzyme catalysts offers many advantages such as reducing the initial capital investment due to simplified downstream processing steps. Despite all the previous advantages, however, the high cost of lipases restricted their large-scale utilization. In the past decade, efforts have been made to reduce the cost of the enzymatic-catalyzed synthesis of OC/BD. However, most previous studies have studied only the technical feasibility of the lipase-catalyzed re- actions and overlocked the economic viability. This review critically discusses the factors affecting the promotion of the economic feasibility of the enzymatic processes from the lab to large scale. These include reactor configuration, type of feedstock, conditions optimization, immobilization, lipase-producing microorganismsItem Has the time finally come for green oleochemicals and biodiesel production using large-scale enzyme technologies? Current status and new developments(Elsevier Inc, 2023-12) Mustafa, Ahmad; Faisal, Shah; Ahmed, Inas A; Munir, Mamoona; Cipolatti, Eliane Pereira; Manoel, Evelin Andrade; Pastore, Carlo; Bitonto, Luigi di; Hanelt, Dieter; Nitbani, Febri Odel; El-Bahy, Zeinhom M; Inayat, Abrar; Abdellatief, Tamer M.M; Tonova, Konstantza; Bokhari, Awais; Abomohra, AbdelfatahWith the growth of the chemical industry over the last decade, the need for cheaper (and more environmentally friendly) alternatives to petrochemicals of ever-increasing cost has grown steadily. Oleochemicals and biodiesel (OC/BD) are considered as green alternatives to petroleum derivatives, because they come from renewable oils and fats. OC/BD are currently produced by the traditional energy intensive chemical catalyzed methods, which have several economic and environmental drawbacks. For these reasons, the enzymatic production of OC/BD has attracted a growing attention for their greener pathway with respect to the chemically catalyzed processes. Lipase-catalyzed processes have a low energy requirement, since reactions are performed under atmospheric pressure and mild temperature and without the creation of side reactions. Furthermore, utilization of enzyme catalysts offers many advantages such as reducing the initial capital investment due to simplified downstream processing steps. Despite all the previous advantages, however, the high cost of lipases restricted their large-scale utilization. In the past decade, efforts have been made to reduce the cost of the enzymatic-catalyzed synthesis of OC/BD. However, most previous studies have studied only the technical feasibility of the lipase-catalyzed reactions and overlocked the economic viability. This review critically discusses the factors affecting the promotion of the economic feasibility of the enzymatic processes from the lab to large scale. These include reactor configuration, type of feedstock, conditions optimization, immobilization, lipase-producing microorganisms.