Browsing by Author "Al-Mahallawi, A.M"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Development and optimization of osmotically controlled drug delivery system for poorly aqueous soluble diacerein to improve its bioavailability(Taylor and Francis Ltd., 05/03/2020) Mohamed, M.I; Al-Mahallawi, A.M; Awadalla, S.MIn an attempt to improve the low oral bioavailability of Diacerein (DCN), the combination of a ternary solid dispersion and an asymmetric osmotic pump system had been designed to enhance solubility and to control DCN delivery. Ternary DCN solid dispersion was prepared by melting fusion method using surfactant polymers, and carrier (Pluronic® PF127, Solutol® HS15, and PEG 35 K) and this DCN solid dispersion powder with the proper amount of excipients were compressed and coated with Opadry®CA to develop a Semi-Permeable and Asymmetric Osmotic Pump tablets. The ternary DCN solid dispersion by using surfactant polymers (Pluronic® F127 and Solutol® HS 15) with a ratio of 1:1 was displayed market significant improvement in saturated solubility (70.2 ± 4.14 µg/ml) and fast dissolution rate (Q60min = 79.28 ± 3.1% and IDR5 min = 5.25 ± 0.19 ml/min) in comparison to pure DCN. Moreover, the optimized asymmetric osmotic pump tablet with following parameters; 3% w/v Opadry® CA coat concentration, 1% w/w HPMC E15 gelling polymer and 35.8%w/w NaCl Osmogen concentration, was displayed control release of DCN at zero-order kinetic (R2 = 0.977) for up to 24 h(s). The in-vivo study conducted on rabbits was revealed a significant enhancement in the bioavailability of the optimized osmotic pump (28.84 ± 3.32 ng.hr/ml) compared to DCN dispersion (10.39 ± 1.45 ng.hr/ml). In conclusion, the approach of enhancing solubility and wet-ability in accompany with optimized asymmetric osmotic pump system could serve as a promising delivery system and a way to improve the bioavailability of poorly aqueous soluble drugs. © 2020, © 2020 Informa UK Limited, trading as Taylor & Francis GroupItem Hexosomes as Efficient Platforms for Possible Fluoxetine Hydrochloride Repurposing with Improved Cytotoxicity against HepG2 Cells(American Chemical Society, 10/06/2020) Abdel-Bar, H.M; Khater, S.E; Ghorab, D.M; Al-Mahallawi, A.MThe aim of this study was to investigate the feasibility of hexosomes (HEXs) as competent platforms for fluoxetine hydrochloride (FH) repurposing against HepG2 hepatocellular carcinoma. Different FH-loaded HEX formulations were prepared and optimized by the hot emulsification method. The HEX features such as particle size, ζ potential, and drug entrapment efficiency (EE%) can be tailored by tuning HEX components and fabrication conditions. The composition of the optimized FH hexosome (OFH-HEX) was composed of 3.1, 1.4, 0.5, 0.2, and 94.8% for glyceryl monooleate, oleic acid, pluronic F127, FH, and deionized water, respectively. The anionic OFH-HEX with a particle size of 145.5 ± 2.5 nm and drug EE% of 45.4 ± 1.2% was able to prolong the in vitro FH release, where only 19.5 ± 2.3% released in phosphate-buffered saline (PBS) pH 7.4 after 24 h. Contrarily, HEX rapidly released FH in acetate buffer pH 5.5 and achieved a 90.5 ± 4.7% release after 24 h. The obtained HEX showed an improved cellular internalization in a time-dependent manner and enhanced the cytotoxicity (2-fold higher than FH solution). The current study suggests the potential of FH-HEX as a possible anticancer agent against hepatocellular carcinoma. ©Item Statistical optimization of hyaluronic acid enriched ultradeformable elastosomes for ocular delivery of voriconazole via Box-Behnken design: in vitro characterization and in vivo evaluation(Taylor and Francis, 2021-01) Fahmy, A.M; Hassan, M; El-Setouhy, D.A; Tayel, S.A; Al-Mahallawi, A.MVoriconazole (VCZ) is a well-known broad spectrum triazole antifungal, mainly used orally and intravenously. The study aimed to formulate VCZ into ultradeformable elastosomes for the topical treatment of ocular fungal keratitis. Different formulae were prepared using a modified ethanol injection method, employing a 33 Box-Behnken design. They were characterized by measuring their entrapment efficiency (EE%), particle size (PS), polydispersity index (PDI) and zeta potential (ZP). The optimized formula was subjected to further in vitro investigations and in vivo evaluation studies. The prepared vesicles had satisfactory EE%, PS, PDI and ZP values. The numerical optimization process suggested an optimal elastosomal formula (OE) composed of phosphatidyl choline and brij S100 at the weight ratio of 3.62: 1, 0.25%w/v hyaluronic acid and 5% (percentage from phosphatidyl choline/brij mixture) polyvinyl alcohol. It had high EE (72.6%), acceptable PS and PDI (362.4 nm and 0.25, respectively) and highly negative ZP of −41.7 mV. OE exhibited higher elasticity than conventional liposomes, with acceptable stability for three months. Transmission electron microscopy demonstrated the spherical morphology of vesicles with an external transparent coat of Hyaluronic acid. OE was expected to cause no ocular irritation or blurring in vision as reflected by pH and refractive index measurements. The histopathological study revealed the safety of OE for ocular use. The fungal susceptibility testing using Candida albicans demonstrated the superiority of OE to VCZ suspension, with greater and more durable growth inhibition. Therefore, OE can be regarded as a promising formula, achieving both safety and efficacy. © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis GroupItem Utilization of PEGylated cerosomes for effective topical delivery of fenticonazole nitrate: in-vitro characterization, statistical optimization, and in-vivo assessment(Taylor and Francis, 2021) Albash, R; Yousry, C; Al-Mahallawi, A.M; Alaa-Eldin, A.AIn this investigation, we focused on ceramide IIIB, a skin component whose depletion tends to augment multiple skin disorders and fungal infections. Ceramide IIIB was included into PEGylated surfactant-based vesicular phospholipid system to formulate ‘PEGylated cerosomes’ (PCs) loaded with fenticonazole nitrate (FTN). FTN is a potent antifungal agent adopted in the treatment of mixed mycotic and bacterial infections. The ceramide content of the vesicles may provide protective and regenerative skin activity whereas Brij®; the PEGylated surfactant, can enhance drug deposition and skin hydration. Both components are expected to augment the topical effect of FTN. PCs were prepared by thin-film hydration technique. A 23 full-factorial design was applied to study the effect of ceramide amount (X1), Brij type (X2) and Brij amount (X3) on the physicochemical properties of the formulated PCs namely; entrapment efficiency (EE%;Y1), particle size (PS;Y2), polydispersity index (PDI;Y3) and zeta potential (ZP;Y4). The optimal formula was selected for further in-vivo dermatokinetic and histopathological study. The optimal FTN-loaded PC (PC6) showed nanosized cerosomes (551.60 nm) with high EE% (83.00%w/w), and an acceptable ZP value of 20.90 mV. Transmission electron micrographs of the optimal formula illustrated intertwined tubulation form deviated from the conventional spherical vesicles. Finally, the dermatokinetic study of PC6 showed higher drug concentration and localization of FTN in skin layers when compared with FTN suspension and the histopathological study confirmed its safety for topical application. The overall findings of our study verified the effectiveness of utilizing PEGylated cerosomes to augment the activity of FTN as a topical antifungal agent. © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group