Iron oxide nanoparticulate system as a cornerstone in the effective delivery of Tc-99m radionuclide: a potential molecular imaging probe for tumor diagnosis

Show simple item record

dc.contributor.author Swidan M.M.
dc.contributor.author Khowessah O.M.
dc.contributor.author El-Motaleb M.A.
dc.contributor.author El-Bary A.A.
dc.contributor.author El-Kolaly M.T.
dc.contributor.author Sakr T.M.
dc.contributor.other Labeled Compounds Department
dc.contributor.other Hot Labs Center
dc.contributor.other Egyptian Atomic Energy Authority
dc.contributor.other PO13759
dc.contributor.other Cairo
dc.contributor.other Egypt; Pharmaceutics and Industrial Pharmacy Department
dc.contributor.other Faculty of Pharmacy
dc.contributor.other Cairo University
dc.contributor.other PO11562
dc.contributor.other Cairo
dc.contributor.other Egypt; Radioactive Isotopes and Generator Department
dc.contributor.other Hot Labs Center
dc.contributor.other Egyptian Atomic Energy Authority
dc.contributor.other PO13759
dc.contributor.other Cairo
dc.contributor.other Egypt; Pharmaceutical Chemistry Department
dc.contributor.other Faculty of Pharmacy
dc.contributor.other Modern Sciences and Arts University
dc.contributor.other 6th October City
dc.contributor.other Egypt
dc.date.accessioned 2020-01-09T20:40:37Z
dc.date.available 2020-01-09T20:40:37Z
dc.date.issued 2019
dc.identifier.issn 15608115
dc.identifier.other https://doi.org/10.1007/s40199-019-00241-y
dc.identifier.other PubMed ID 30706223
dc.identifier.uri https://t.ly/py7mO
dc.description Scopus
dc.description MSA Google Scholar
dc.description.abstract Background: The evolution of nanoparticles has gained prominence as platforms for developing diagnostic and/or therapeutic radiotracers. This study aims to develop a novel technique for fabricating a tumor diagnostic probe based on iron oxide nanoparticles excluding the utilization of chelating ligands. Methods: Tc-99m radionuclide was loaded into magnetic iron oxide nanoparticles platform (MIONPs) by sonication. 99mTc-encapsulated MIONPs were fully characterized concerning particles size, charge, radiochemical purity, encapsulation efficiency, in-vitro stability and cytotoxicity. These merits were biologically evaluated in normal and solid tumor bearing mice via different delivery approaches. Results: 99mTc-encapsulated MIONPs probe was synthesized with average particle size 24.08 7.9nm, hydrodynamic size 52nm, zeta potential -28mV, radiolabeling yield 96 0.83%, high in-vitro physiological stability, and appropriate cytotoxicity behavior. The in-vivo evaluation in solid tumor bearing mice revealed that the maximum tumor radioactivity accumulation (25.39 0.57, 36.40 0.59 and 72.61 0.82%ID/g) was accomplished at 60, 60 and 30min p.i. for intravenous, intravenous with physical magnet targeting and intratumoral delivery, respectively. The optimum T/NT ratios of 57.70, 65.00 and 87.48 were demonstrated at 60min post I.V., I.V. with physical magnet targeting and I.T. delivery, respectively. These chemical and biological characteristics of our prepared nano-probe demonstrate highly advanced merits over the previously reported chelator mediated radiolabeled nano-formulations which reported maximum tumor uptakes in the scope of 3.65 0.19 to 16.21 2.56%ID/g. Conclusion: Stabilized encapsulation of 99mTc radionuclide into MIONPs elucidates a novel strategy for developing an advanced nano-sized radiopharmaceutical for tumor diagnosis. [Figure not available: see fulltext.]. 2019, Springer Nature Switzerland AG. en_US
dc.description.uri https://www.scimagojr.com/journalsearch.php?q=20710&tip=sid&clean=0
dc.language.iso English en_US
dc.publisher Springer en_US
dc.relation.ispartofseries DARU, Journal of Pharmaceutical Sciences
dc.relation.ispartofseries 27
dc.subject October University for Modern Sciences and Arts
dc.subject جامعة أكتوبر للعلوم الحديثة والآداب
dc.subject University of Modern Sciences and Arts
dc.subject MSA University
dc.subject Chelator free radiolabeling en_US
dc.subject Encapsulation en_US
dc.subject Magnetic iron oxide nanoparticles en_US
dc.subject Tc-99m radionuclide en_US
dc.subject Tumor delivery en_US
dc.subject Tumor diagnosis en_US
dc.subject magnetic iron oxide nanoparticle en_US
dc.subject magnetic nanoparticle en_US
dc.subject technetium 99m en_US
dc.subject ultrasmall superparamagnetic iron oxide en_US
dc.subject unclassified drug en_US
dc.subject ferric ion en_US
dc.subject ferric oxide en_US
dc.subject magnetite nanoparticle en_US
dc.subject technetium en_US
dc.subject Technetium-99 en_US
dc.subject animal experiment en_US
dc.subject animal model en_US
dc.subject animal tissue en_US
dc.subject Article en_US
dc.subject cell viability en_US
dc.subject chemical parameters en_US
dc.subject controlled study en_US
dc.subject drug cytotoxicity en_US
dc.subject drug delivery system en_US
dc.subject drug stability en_US
dc.subject encapsulation efficiency en_US
dc.subject human en_US
dc.subject human cell en_US
dc.subject hydrodynamic size en_US
dc.subject in vitro study en_US
dc.subject in vivo study en_US
dc.subject isotope labeling en_US
dc.subject molecular imaging en_US
dc.subject mouse en_US
dc.subject nanoencapsulation en_US
dc.subject nonhuman en_US
dc.subject particle charge en_US
dc.subject particle size en_US
dc.subject physical parameters en_US
dc.subject radiochemical purity en_US
dc.subject synthesis en_US
dc.subject tumor diagnosis en_US
dc.subject ultrasound en_US
dc.subject zeta potential en_US
dc.subject animal en_US
dc.subject cancer transplantation en_US
dc.subject cell line en_US
dc.subject cell survival en_US
dc.subject chemistry en_US
dc.subject diagnostic imaging en_US
dc.subject intravenous drug administration en_US
dc.subject Administration, Intravenous en_US
dc.subject Animals en_US
dc.subject Cell Line en_US
dc.subject Cell Survival en_US
dc.subject Ferric Compounds en_US
dc.subject Humans en_US
dc.subject Magnetite Nanoparticles en_US
dc.subject Mice en_US
dc.subject Neoplasm Transplantation en_US
dc.subject Particle Size en_US
dc.subject Technetium en_US
dc.title Iron oxide nanoparticulate system as a cornerstone in the effective delivery of Tc-99m radionuclide: a potential molecular imaging probe for tumor diagnosis en_US
dc.type Article en_US
dcterms.isReferencedBy Sakr, T.M., Khowessah, O.M., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T., Swidan, M.M., I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery (2018) Eur J Pharm Sci, 122, pp. 239-245; Xing, Y., Zhao, J., Shi, X., Conti, P.S., Chen, K., Recent development of radiolabeled nanoparticles for PET imaging (2014) Austin J Nanomed Nanotechnol, 2 (2), p. 1016; De Barros, A.B., Tsourkas, A., Saboury, B., Cardoso, V.N., Alavi, A., Emerging role of radiolabeled nanoparticles as an effective diagnostic technique (2012) EJNMMI Res, 2 (1), p. 39; Welch, M.J., Hawker, C.J., Wooley, K.L., The advantages of nanoparticles for PET (2009) J Nucl Med, 50, pp. 1743-1746; Goel, S., Chen, F., Ehlerding, E.B., Cai, W., Intrinsically radiolabeled nanoparticles: an emerging paradigm (2014) Small, 10 (19), pp. 3825-3830; Zhao, J., Zhou, M., Li, C., Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy (2016) Cancer Nanotechnol, 7 (1), p. 9; Lamb, J.R., Holland, J.P., Advanced methods for radiolabelling nanomedicines for multi-modality nuclear/MR imaging (2018) J Nucl Med, 59 (3), pp. 382-389; Cisneros, B.T., Law, J.J., Matson, M.L., Azhdarinia, A., Sevick-Muraca, E.M., Wilson, L.J., Stable confinement of positron emission tomography and magnetic resonance agents within carbon nanotubes for bimodal imaging (2014) Nanomedicine, 9 (16), pp. 2499-2509; Guven, A., Rusakova, I.A., Lewis, M.T., Wilson, L.J., Cisplatin@ US-tube carbon nanocapsules for enhanced chemotherapeutic delivery (2012) Biomaterials, 33 (5), pp. 1455-1461; Abou, D.S., Pickett, J.E., Thorek, D.L.J., Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation (2015) Br J Radiol, 88, p. 1054; Maria, A.V.W., Margarida, M.C.O., Marcela, Z., Ariane, J.S.B., Mohammed, Q., Ralph, S.O., Nanoradiopharmaceuticals for nanomedicine: Building the future (2014) Recent Pat Nanomed, 4 (2), pp. 90-94; Ting, G., Chang, C.H., Wang, H.E., Cancer nanotargeted radiopharmaceuticals for tumor imaging and therapy (2009) Anticancer Res, 29, pp. 4107-4118; Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A.R., Ali, J.S., Hussain, A., Synthesis, characterization, applications, and challenges of iron oxide nanoparticles (2016) Nanotechnol Sci Appl, 9, pp. 49-67; Lu, Q., Wei, D., Zhou, J., Xu, J., Cheng, J., Zhu, J., Preparation of polymer-functionalized iron oxide nanoparticles and their biomedical properties (2013) Chin J Chem, 31, pp. 40-406; Swidan, M.M., Sakr, T.M., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T., Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging (2015) J Radioanal Nucl Chem, 303, pp. 531-539; Swidan, M.M., Sakr, T.M., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T., Radioiodinated acebutolol as a new highly selective radiotracer for myocardial perfusion imaging (2014) J Label Compd Radiopharm, 57, pp. 593-599; Sakr, T.M., Ibrahim, A.B., Fasih, T.W., Rashed, H.M., Preparation and biological profile of 99mTc-lidocaine as a cardioselective imaging agent using 99mTc eluted from 99Mo/99mTc generator based on Al-Mo gel (2017) J Radioanal Nucl Chem, 314 (3), pp. 2091-2098; Radovic, M., Calatayud, M.P., Goya, G.F., Ibarra, M.R., Antic, B., Spasojevic, V., Nikolic, N., Vranjes, D.S., Preparation and in vivo evaluation of multifunctional 90Y-labeled magnetic nanoparticles designed for cancer therapy (2015) J Biomed Mater Res A, 103 (1), pp. 126-134; Liu, X.L., Fan, H.M., Yi, J.B., Yang, Y., Choo, E.S.G., Xue, J.M., Fana, D.D., Ding, J., Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents (2012) J Mater Chem B, 22, pp. 8235-8244; Sinha, N., Cifter, G., Sajo, E., Kumar, R., Sridhar, S., Nguyen, P.L., Cormack, R.A., Ngwa, W., Brachytherapy application with in situ dose painting administered by gold nanoparticle eluters (2015) Int J Radiat Oncol Biol Phys, 91, pp. 385-392; Kong, L., Hu, J., Qin, D., Yan, P., Interaction of Ifosfamide-loaded superparamagnetic iron oxide nanoparticles with human serum albumin-a biophysical study (2015) J Pharm Innov, 10, pp. 13-20; Mondini, S., Cenedese, S., Marinoni, G., Molteni, G., Santo, N., Bianchi, C.L., Ponti, A., One-step synthesis and functionalization of hydroxyl-decorated magnetite nanoparticles (2008) J Colloid Interface Sci, 322, pp. 173-179; Khayatian, G., Hassanpoor, S., Azar, A.R.J., Mohebbi, S., Spectrophotometric determination of trace amounts of uranium(VI) using modified magnetic iron oxide nanoparticles in environmental and biological samples (2013) J Braz Chem Soc, 24, pp. 1808-1817; Mirshojaei, S.F., Ahmadi, A., Avila, E.M., Reynoso, M.O., Perez, H.R., Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer (2016) J Drug Target, 24 (2), pp. 91-101; Tsiapa, I., Efthimiadou, E.K., Fragogeorgi, E., Loudos, G., Varvarigou, A.D., Bouziotis, P., 99mTc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ?v?3-mediated tumor expression and feasibility for hyperthermia treatment (2014) J Colloid Interface Sci, 433, pp. 163-175; Banerjee, S., Pillai, M.R., Ramamoorthy, N., Evolution of Tc-99m in diagnostic radiopharmaceuticals (2001) Semin Nucl Med, 31, pp. 260-277; Matson, M.L., Villa, C.H., Ananta, J.S., Law, J.J., Scheinberg, D.A., Wilson, L.J., Encapsulation of ?-particle-emitting 225Ac3+ ions within carbon nanotubes (2015) J Nucl Med, 56 (6), pp. 897-900; Gonzales, M., Mitsumori, L.M., Kushleika, J.V., Rosenfeld, M.E., Krishnan, K.M., Cytotoxicity of iron oxide nanoparticles made from the thermal decom-position of organometallics and aqueous phase transfer with Pluronic F127 (2010) Contrast Media Mol Imaging, 5 (5), pp. 286-293; Hoskins, C., Cuschieri, A., Wang, L., The cytotoxicity of polycationic iron oxide nanoparticles: common endpoint assays and alternative approaches for improved understanding of cellular response mechanism (2012) J Nanobiotechnology, 10, p. 15; Bao, A., Goins, B., Klipper, R., Negrete, G., Phillips, W.T., Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies (2004) J Pharmacol Exp Ther, 308, pp. 419-425; Amirkhizi, A.A., Banaem, L.M., Allaf, M.A., Sadjadi, S., Daha, F.J., Development of dendrimer encapsulated Radio-Ytterbium and biodistributionin tumor bearing mice (2016) IEEE Trans NanoBiosci, 15 (6), pp. 549-554; Psimadas, D., Bouziotis, P., Georgoulias, P., Valotassiou, V., Tsotakos, T., Loudos, G., Radiolabeling approaches of nanoparticles with 99mTc (2013) Contrast Media Mol Imaging, 8, pp. 333-339; Zhang, G., Yang, Z., Lu, W., Zhang, R., Huang, Q., Tian, M., Li, L., Li, C., Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice (2009) Biomaterials, 30 (10), pp. 1928-1936; Shi, J., Kantoff, P.W., Wooster, R., Farokhzad, O.C., Cancer nanomedicine: progress, challenges and opportunities (2017) Nat Rev Cancer, 17, pp. 20-37; Thakor, A.S., Gambhir, S.S., Nanooncology: the future of cancer diagnosis and therapy (2013) CA Cancer J Clin, 63, pp. 395-418; Matsumura, Y., Maeda, H., A new concept for macromolecular therapeutics in cancerchemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs (1986) Cancer Res, 46 (12), pp. 6387-6392; Maeda, H., The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting (2001) Adv Enzym Regul, 41, pp. 189-207; Folkman, J., What is the evidence that tumors are angiogenesis dependent (1990) J Natl Cancer Inst, 82 (1), p. 4; Folkman, J., Angiogenesis in cancer, vascular, rheumatoid and other disease (1995) Nat Med, 1 (1), p. 27; Folkman, J., Tumor angiogenesis-therapeutic implications (1971) N Engl J Med, 285 (21), pp. 1182-1186; Hobbs, S.K., Monsky, W.L., Yuan, F., Roberts, W.G., Griffith, L., Torchilin, V.P., Jain, R.K., Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment (1998) Proc Natl Acad Sci U S A, 95 (8), pp. 4607-4612; Venturoli, D., Rippe, B., Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability (2005) Am J Physiol Renal Physiol, 288 (4), pp. F605-F613; Konno, T., Maeda, H., Iwai, K., Maki, S., Tashiro, S., Uchida, M., Miyauchi, Y., Selective targeting of anticancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast-medium (1984) Cancer, 54 (11), pp. 2367-2374; Moghimi, S.M., Szebeni, J., Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties (2003) Prog Lipid Res, 42 (6), pp. 463-478; Moghimi, S.M., Hunter, A.C., Murray, J.C., Long-circulating and target-specific nanoparticles: theory to practice (2001) Pharmacol Rev, 53 (2), pp. 283-318; Gref, R., Luck, M., Quellec, P., Marchand, M., Dellacherie, E., Harnisch, S., Blunk, T., Muller, R.H., Stealth� corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption (2000) Colloids Surf B Biointerfaces, 18 (3-4), pp. 301-313; Yang, X., Hong, H., Grailer, J.J., Rowland, I.J., Javadi, A., Hurley, S.A., Xiao, Y., Gong, S., cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging (2011) Biomaterials, 32 (17), pp. 4151-4160; Morales-Avila, E., Ferro-Flores, G., Ocampo-Garcia, B.E., Leon-Rodriguez, L.M., Santos-Cuevas, C.L., Garcia-Becerra, R., Medina, L.A., Gomez-Olivan, L., Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor ?(v)?(3) expression (2011) Bioconjug Chem, 22, pp. 913-922; Liu, Z., Cai, W., He, L., Nakayama, N., Chen, K., Sun, X., Chen, X., Dai, H., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice (2007) Nat Nanotechnol, 2, pp. 47-52; Lahooti, A., Sarkar, S., Saligheh-Rad, H., Gholami, A., Nosrati, S., Muller, R.N., Laurent, S., Yousefnia, H., PEGylated superparamagnetic iron oxide nanoparticles labeled with 68Ga as a PET/MRI contrast agent: a biodistribution study (2017) J Radioanal Nucl Chem, 311, pp. 769-774; Natarajan, A., Xiong, C.Y., Gruettner, C., DeNardo, G.L., DeNardo, S.J., Development of multivalent radioimmunonanoparticles for cancer imaging and therapy (2008) Cancer Biother Radiopharm, 23, pp. 82-91; Hu, G., Lijowski, M., Zhang, H., Partlow, K.C., Caruthers, S.D., Kiefer, G., Gulyas, G., Lanza, G.M., Imaging of Vx-2 rabbit tumors with alpha (nu) beta3-integrin-targeted 111In nanoparticles (2007) Int J Cancer, 120 (9), pp. 1951-1957; Tsoukalas, C., Psimadas, D., Kastis, G.A., Koutoulidis, V., Harris, A.L., Paravatou-Petsotas, M., Karageorgou, M., Bouziotis, P., A novel metal-based imaging probe for targeted dual-modality SPECT/MR imaging of angiogenesis (2018) Front Chem, 6, p. 224
dcterms.source Scopus
dc.identifier.doi https://doi.org/10.1007/s40199-019-00241-y
dc.identifier.doi PubMed ID 30706223
dc.Affiliation October University for modern sciences and Arts (MSA)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MSAR


Advanced Search

Browse

My Account