Centaurea pumilio L. extract and nanoparticles: A candidate for healthy skin

Show simple item record

dc.contributor.author Mostafa E.
dc.contributor.author Fayed M.A.A.
dc.contributor.author Radwan R.A.
dc.contributor.author Bakr R.O.
dc.contributor.other Department of Pharmacognosy
dc.contributor.other Faculty of Pharmacy
dc.contributor.other October University for Modern Sciences and Arts (MSA)
dc.contributor.other Giza
dc.contributor.other 11787
dc.contributor.other Egypt; Department of Pharmacognosy
dc.contributor.other Faculty of Pharmacy
dc.contributor.other University of Sadat City
dc.contributor.other Egypt; Biochemistry and Biotechnology Department
dc.contributor.other Faculty of Pharmacy & Drug Technology
dc.contributor.other Heliopolis University
dc.contributor.other Cairo
dc.contributor.other Egypt
dc.date.accessioned 2020-01-09T20:40:33Z
dc.date.available 2020-01-09T20:40:33Z
dc.date.issued 2019
dc.identifier.issn 9277765
dc.identifier.other https://doi.org/10.1016/j.colsurfb.2019.110350
dc.identifier.other PubMed ID 31326622
dc.identifier.uri https://t.ly/XAA01
dc.description Scopus
dc.description.abstract Centaurea pumilio was the subject of phytochemical and biological studies, and its extract was used in the green synthesis of silver nanoparticles (AgNPs). Liquid chromatography/electrospray ionization mass spectrometry allowed the tentative identification of twenty-nine phytoconstituents of C. pumilio methanolic extract (CME), while column chromatography led to the identification of eight phenolic compounds. The neutral red uptake method showed the safety of CME and AgNPs on skin cells (HaCaT cell lines), while their high antioxidant potentials were demonstrated based on their oxygen radical absorbance capacity, and these results were confirmed in vivo. Additionally, CME and AgNPs had promising abilities to retard the ageing process and combat dark spots by potently inhibiting collagenase, elastase and tyrosinase, in addition to antimicrobial activity against skin infection-causing strains, especially Staphylococcus aureus, which was further confirmed by the significant phagocytic activity of neutrophils via engulfment. This study presents C. pumilio as a candidate for healthy skin. 2019 Elsevier B.V. en_US
dc.description.uri https://www.scimagojr.com/journalsearch.php?q=26590&tip=sid&clean=0
dc.language.iso English en_US
dc.publisher Elsevier B.V. en_US
dc.relation.ispartofseries Colloids and Surfaces B: Biointerfaces
dc.relation.ispartofseries 182
dc.subject Anti-ageing en_US
dc.subject Centaurea en_US
dc.subject Nanoparticles en_US
dc.subject Phenolics en_US
dc.subject Bacteria en_US
dc.subject Cell culture en_US
dc.subject Ionization of liquids en_US
dc.subject Liquid chromatography en_US
dc.subject Mass spectrometry en_US
dc.subject Nanoparticles en_US
dc.subject Silver nanoparticles en_US
dc.subject Synthesis (chemical) en_US
dc.subject Anti-ageing en_US
dc.subject Anti-microbial activity en_US
dc.subject Antioxidant potential en_US
dc.subject Centaurea en_US
dc.subject Ionization mass spectrometry en_US
dc.subject Oxygen radical absorbance capacities en_US
dc.subject Phenolics en_US
dc.subject Silver nanoparticles (AgNps) en_US
dc.subject Column chromatography en_US
dc.subject antiinfective agent en_US
dc.subject antioxidant en_US
dc.subject Centaurea pumilio extract en_US
dc.subject collagenase en_US
dc.subject elastase en_US
dc.subject ketoconazole en_US
dc.subject monophenol monooxygenase en_US
dc.subject plant extract en_US
dc.subject silver nanoparticle en_US
dc.subject unclassified drug en_US
dc.subject vancomycin en_US
dc.subject animal experiment en_US
dc.subject animal tissue en_US
dc.subject antimicrobial activity en_US
dc.subject antioxidant activity en_US
dc.subject Article en_US
dc.subject Candida albicans en_US
dc.subject Centaurea en_US
dc.subject Centaurea pumilio en_US
dc.subject column chromatography en_US
dc.subject cytotoxicity en_US
dc.subject electrospray mass spectrometry en_US
dc.subject Escherichia coli en_US
dc.subject female en_US
dc.subject HaCat cell line en_US
dc.subject human en_US
dc.subject IC50 en_US
dc.subject in vivo study en_US
dc.subject liquid chromatography-mass spectrometry en_US
dc.subject nonhuman en_US
dc.subject ORAC assay en_US
dc.subject priority journal en_US
dc.subject Pseudomonas aeruginosa en_US
dc.subject rat en_US
dc.subject Staphylococcus aureus en_US
dc.subject Streptococcus pyogenes en_US
dc.subject traditional medicine en_US
dc.title Centaurea pumilio L. extract and nanoparticles: A candidate for healthy skin en_US
dc.type Article en_US
dcterms.isReferencedBy Farage, M.A., Miller, K.W., Elsner, P., Maibach, H.I., Intrinsic and extrinsic factors in skin ageing: a review (2008) Int. J. Cosmet. Sci., 30, pp. 87-95; Ritti�, L., Fisher, G.J., UV-light-induced signal cascades and skin aging (2002) Ageing Res. Rev., 1, pp. 705-720; Thring, T.S.A., Hili, P., Naughton, D.P., Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants (2009) BMC Complement. Altern. Med.; Pittayapruek, P., Meephansan, J., Prapapan, O., Komine, M., Ohtsuki, M., Role of matrix metalloproteinases in photoaging and photocarcinogenesis (2016) Int. J. Mol. Sci., 17, pp. 868-888; Petruk, G., Del Giudice, R., Rigano, M.M., Monti, D.M., Antioxidants from plants protect against skin photoaging (2018) Oxid. Med. Cell. Longev.; Mukherjee, P.K., Maity, N., Nema, N.K., Sarkar, B.K., Bioactive compounds from natural resources against skin aging (2011) Phytomedicine, 19, pp. 64-73; Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K., Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations (2018) Beilstein J. Nanotechnol., 9, pp. 1050-1074; Seqqat, R., Blaney, L., Quesada, D., Kumar, B., Cumbal, L., Nanoparticles for environment, engineering, and nanomedicine (2019) J. Nanotechnol., 2019, pp. 1-2; Iravani, S., Korbekandi, H., Mirmohammadi, S.V., Zolfaghari, B., Synthesis of silver nanoparticles: chemical, physical and biological methods (2014) Res. Pharm. Sci., 9, pp. 385-406; Lopes, L.C.S., Brito, L.M., Bezerra, T.T., Gomes, K.N., Carvalho, F.A.D.A., Chaves, M.H., Cantanh�de, W., Silver and gold nanoparticles from tannic acid: synthesis, characterization and evaluation of antileishmanial and cytotoxic activities (2018) An. Acad. Bras. Cienc., 90, pp. 2679-2689; Roy, A., Bulut, O., Some, S., Mandal, A.K., Yilmaz, M.D., Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity (2019) RSC Adv., 9, pp. 2673-2702; Onitsuka, S., Hamada, T., Okamura, H., Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts (2019) Colloids Surf. B Biointerfaces, 173, pp. 242-248; Kesharwani, J., Yoon, K.Y., Hwang, J., Rai, M., Phytofabrication of silver nanoparticles by leaf extract of Datura metel: hypothetical mechanism involved in synthesis (2009) J. Bionanosci., 3, pp. 1-6; Delprete, P., Mabberley, D.J., The plant-book: a portable dictionary of the vascular plants (1998) Brittonia, 50, p. 466; Bakr, R.O., Mohamed, S.A.E.H., Ayoub, N., Phenolic profile of centaurea aegyptiaca L. Growing in Egypt and its cytotoxic and antiviral activities (2016) Afr. J. Tradit. Complement. Altern. Med., 13, pp. 135-143; Hammoud, L., Seghiri, R., Benayache, S., Mosset, P., Lobstein, A., Chaabi, M., Le�n, F., Benayache, F., A new flavonoid and other constituents from Centaurea nicaeensis All (2012) var. walliana M., Nat. Prod. Res., 26, pp. 203-208; Ahmed, S.A., Kamel, E.M., Cytotoxic activities of flavonoids from Centaurea scoparia (2014) Sci. World J., 2014; Seghiri, R., Boumaza, O., Mekkiou, R., Benayache, S., Mosset, P., Quintana, J., Est�vez, F., Benayache, F., A flavonoid with cytotoxic activity and other constituents from Centaurea africana (2009) Phytochem. Lett., 2, pp. 114-118; Nacer, A., Merza, J., Kabouche, Z., Rhouati, S., Boustie, J., Richomme, P., Sesquiterpene lactones from Centaurea tougourensis (2012) Biochem. Syst. Ecol., 43, pp. 163-165; Saroglou, V., Karioti, A., Demetzos, C., Dimas, K., Skaltsa, H., Sesquiterpene lactones from Centaurea s pinosa and their antibacterial and cytotoxic activities (2005) J. Nat. Prod., 68, pp. 1404-1407; Koukoulitsa, E., Skaltsa, H., Karioti, A., Demetzos, C., Dimas, K., Bioactive Sesquiterpene lactones from Centaurea species and their cytotoxic/cytostatic activity against human cell lines in vitro (2002) Planta Med., 68, pp. 649-652; Shaltout, K.H., Al-Sodany, Y.M., Vegetation analysis of burullus wetland: a RAMSAR site in Egypt (2008) Wetl. Ecol. Manag., 16, pp. 421-439; Yousif, F., Wassel, G., Boulos, L., Labib, T., Mahmoud, K., El-Hallouty, S., El Bardicy, S., El-Menshawi, B., Contribution to in vitro screening of Egyptian plants for schistosomicidal activity (2012) Pharm. Biol., 50, pp. 732-739; Ibrahim, A.Y., Mahmoud, K., El-Hallouty, S.M., Screening of antioxidant and cytotoxicity activities of some plant extracts from {Egyptian} flora (2011) J. Appl. Sci. Res., 7, pp. 1246-1257; �ili?, S., Serpen, A., Akillio?lu, G., G�kmen, V., Van?etovi?, J., Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels (2012) J. Agric. Food Chem., 60, pp. 1224-1231; Zayed, M.F., Eisa, W.H., Abdel-Moneam, Y.K., El-kousy, S.M., Atia, A., Ziziphus spina-christi based bio-synthesis of Ag nanoparticles (2015) J. Ind. Eng. Chem., 23, pp. 50-56; Lucas-Abelln, C., Mercader-Ros, M.T., Zafrilla, M.P., Fortea, M.I., Gabaldn, J.A., Nez-Delicado, E., ORAC-Fluorescein assay to determine the oxygen radical absorbance capacity of resveratrol complexed in cyclodextrins (2008) J. Agric. Food Chem., 56, pp. 2254-2259; Repetto, G., del Peso, A., Zurita, J.L., Neutral red uptake assay for the estimation of cell viability/cytotoxicity (2008) Nat. Protoc., 3, pp. 1125-1131; Kraunsoe, J.A.E., Claridge, T.D.W., Lowe, G., Inhibition of human leukocyte and porcine pancreatic elastase by homologues of bovine pancreatic trypsin inhibitor (1996) Biochemistry, 35, pp. 9090-9096; Rauniyar, R., Talkad, M., Sahoo, S., Singh, A., Harlalka, P., Anti-tyrosinase activity of Stachytarpheta cayennensis in vitro (2014) Int. J. Innov. Res. Sci. Eng. Technol. (An ISO Certif. Organ., 3, pp. 14259-14266; Balouiri, M., Sadiki, M., Ibnsouda, S.K., Methods for in vitro evaluating antimicrobial activity: a review (2016) J. Pharm. Anal., 6, pp. 71-79; O.I.E, Laboratory methodologies for bacterial antimicrobial susceptibility testing (2012) OIE Terr. Man.; Hakim, A.S., Bakry, M.A., Abdou, A.M., Shawky, H., Immunomodulatory effect of lung surfactant on buffalo monocytes and polymorphs in vitro (2015) Int. J. Curr. Microbiol. App. Sci., 4, pp. 939-945; Quade, M.J., Roth, J.A., A rapid, direct assay to measure degranulation of bovine neutrophil primary granules (1997) Vet. Immunol. Immunopathol., 58, pp. 239-248; Hogan, J.S., Smith, K.L., Weiss, W.P., a Todhunter, D., Schockey, W.L., Relationships among vitamin E, selenium, and bovine blood neutrophils (1990) J. Dairy Sci., 73, pp. 2372-2378; Silva, I.D., Jain, N.C., Farver, T.B., Zinkl, J.G., Phagocytic and postphagocytic activities of bovine neutrophils for pure and mixed bacterial cultures (1988) J. Dairy Sci., pp. 2513-2519; Nagl, M., Kacani, L., Mullauer, B., Lemberger, E.-M., Stoiber, H., Sprinzl, G.M., Schennach, H., Dierich, M.P., Phagocytosis and killing of bacteria by professional phagocytes and dendritic cells (2002) Clin. Vaccine Immunol., 9, pp. 1165-1168; Winnicka, A., Klucin?ski, W., Kawiak, J., Hoser, G., Sikora, J., Effect of Baypamun� on blood leucocytes in normal and dexamathasone treated goats (2000) J. Vet. Med. Ser. A Physiol. Pathol. Clin. Med., pp. 385-394; Slominski, A., Tobin, D.J., Shibahara, S., Wortsman, J., Melanin pigmentation in mammalian skin and its hormonal regulation (2004) Physiol. Rev., 84, pp. 1155-1228; Hanhineva, K., Rogachev, I., Kokko, H., Mintz-Oron, S., Venger, I., K�renlampi, S., Aharoni, A., Non-targeted analysis of spatial metabolite composition in strawberry (Fragaria ananassa) flowers (2008) Phytochemistry, 69, pp. 2463-2481; El-Toumy, S.A., Salib, J.Y., El-Kashak, W.A., Marty, C., Bedoux, G., Bourgougnon, N., Antiviral effect of polyphenol rich plant extracts on herpes simplex virus type 1 (2018) Food Sci. Hum. Wellness, pp. 91-101; Youssef, D., Frahm, A.W., Constituents of the Egyptian Centaurea scoparia; III. Phenolic consituents of the aerial parts (1995) Planta Med., 61, pp. 570-573; ?urkovi?-Perica, M., Liki?, S., Rusak, G., Phenolic compounds in Centaurea rupestris tissues and their antiphytoviral activity (2014) Croat. Chem. Acta, 87, pp. 79-84; Albayrak, S., Atasagun, B., Aksoy, A., Comparison of phenolic components and biological activities of two Centaurea sp. Obtained by three extraction techniques (2017) Asian Pac. J. Trop. Med., 10, pp. 599-606; Litvinenko, V.I., Bubenchikova, V.N., Phytochemical study of Centaurea cyanus (1988) Chem. Nat. Compd., 24, pp. 672-674; Vidhu, V.K., Aromal, S.A., Philip, D., Green synthesis of silver nanoparticles using Macrotyloma uniflorum (2011) Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 83, pp. 392-397; Noginov, M.A., Zhu, G., Bahoura, M., Adegoke, J., Small, C., Ritzo, B.A., Drachev, V.P., Shalaev, V.M., The effect of gain and absorption on surface plasmons in metal nanoparticles (2007) Appl. Phys. B, 86, pp. 455-460; Borodina, V.G., Mirgorod, Y.A., Kinetics and mechanism of the interaction between HAuCl4 and rutin (2014) React. Kinet. Catal. Lett., 55, pp. 683-687; El Toumy, S., Omara, E., Brouard, I., Bermejo, J., Flavonoids from Centaurea glomerata and antioxidant activity of its extract (2011) Planta Med., 77, p. PG11; Esmaeili, A., Mousavi, Z., Shokrollahi, M., Shafaghat, A., Antioxidant activity and isolation of luteoline from Centaurea behen L. Grown in Iran (2013) J. Chem., 2013, pp. 1-5; Masaki, H., Role of antioxidants in the skin: anti-aging effects (2010) J. Dermatol. Sci., 52, pp. 85-90; Madhan, B., Krishnamoorthy, G., Rao, J.R., Nair, B.U., Role of green tea polyphenols in the inhibition of collagenolytic activity by collagenase (2007) Int. J. Biol. Macromol., 41, pp. 16-22; McDonald, M., Mila, I., Scalbert, A., Precipitation of metal ions by plant polyphenols: optimal conditions and origin of precipitation (1996) J. Agric. Food Chem., 44, pp. 599-606; Heung, S.B., Ho, S.R., Jae, W.Y., Soo, M.A., Jin, Y.L., Jeonga-Lee, Kim, M.K., Ih, S.C., The inhibitory effect of new hydroxamic acid derivatives on melanogenesis (2008) Bull. Korean Chem. Soc., 29, pp. 43-46; Manivasagan, P., Kim, S.-K., Biosynthesis of nanoparticles using Marine algae: a review (2015) Mar. Algae Extr, pp. 295-304. , Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, Germany; Ugur, A., Duru, M.E., Ceylan, O., Sarac, N., Varol, O., Kivrak, I., Chemical composition, antimicrobial and antioxidant activities of Centaurea ensiformis Hub.-Mor. (Asteraceae), a species endemic to Mugla (Turkey) (2009) Nat. Prod. Res., 23, pp. 149-167; Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O., Oxidative stress and antioxidant defense (2012) World Allergy Organ. J., 5, pp. 9-19; Aratani, Y., Myeloperoxidase: its role for host defense, inflammation, and neutrophil function (2018) Arch. Biochem. Biophys., 640, pp. 47-52; Esposito, S., Bassetti, M., Concia, E., De Simone, G., De Rosa, F.G., Grossi, P., Novelli, A., Viscoli, C., Diagnosis and management of skin and soft-tissue infections (SSTI). A literature review and consensus statement: an update (2017) J. Chemother., 29, pp. 197-214; McGuinness, W., Kobayashi, S., DeLeo, F., Evasion of neutrophil killing by Staphylococcus aureus (2016) Pathogens, pp. 32-45; Grigore, A., Plant Phenolic Compounds As Immunomodulatory Agents (2017), Phenolic Compd. - Biol. Act., InTech
dcterms.source Scopus
dc.identifier.doi https://doi.org/10.1016/j.colsurfb.2019.110350
dc.identifier.doi PubMed ID 31326622
dc.Affiliation October University for modern sciences and Arts (MSA)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MSAR


Advanced Search

Browse

My Account