Colorization Using Deep Convolutional Neural Networks

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Type

Other

Publisher

October University of Modern Sciences and Arts

Series Info

Doi

Scientific Journal Rankings

Abstract

يتم تقديم تقنية عامة لتحويل الصور ذات التدرج الرمادي إلى صورة ملونة ، ولتحقيق ذلك ، يلزم استخدام تقنية معينة للتنبؤ ببعض لون بكسل معين في الصورة بشكل تكيفي باستخدام أساليب التعلم العميق. على الرغم من أن إضافة اللون إلى الصور ذات اللون الرمادي يمكن أن يساعد في تحسين كل من المظهر البصري والتعبير. تم استكشاف بنى الشبكة المختلفة والأهداف ومساحات الألوان وتركيبات المشكلات. تسمى الطريقة المستخدمة في هذه الورقة الشبكة العصبية التلافيفية العميقة حيث لعبت دورًا بارزًا في معالجة الصور ورؤية الكمبيوتر. يمكننا تدريب صورنا للحصول على صور ملونة تتكون من 3 قنوات. يتدرب المشروع في الغالب على فراغ لوني مختلف عن كل الصور ، حيث يتم تحويل كل صورة إلى فراغ لوني L * a * b * ويمر حسب النموذج الذي تم إنشاؤه. ينصب التركيز الرئيسي في هذا المشروع على نموذجين مختلفين ، أحدهما لكل قناة متوقعة "a" و "b". يمكن أن تتغير خسارة القنوات المتوقعة من فئة إلى فئة أخرى. يمكن استخدام هذه الفكرة نفسها في تحويل مقاطع الفيديو ذات التدرج الرمادي أو تلك القديمة إلى مقاطع ملونة مثل الأفلام القديمة ، ويمكن أن يساعد تلوين الفيديو كثيرًا في الأفلام وتسجيلات CCTV القديمة التي تسجل بالأبيض والأسود. قم بتغذية النموذج بمجموعة من الصور التي يمكن تحويلها إلى مشهد ملون نهائي. يمكن أن يساعد تلوين الفيديو كثيرًا في الأفلام وتسجيلات CCTV القديمة التي تسجل بالأبيض والأسود. قد يكون تحسين النموذج في المستقبل من خلال تغذية النموذج بمجموعة من الصور التي يمكن تحويلها إلى مشهد ملون نهائي.

Description

Keywords

October University of Modern Sciences and Arts, University of Modern Sciences and Arts, MSA university, جامعة أكتوبر للعلوم الحديثة والآداب, Artificial intelligence

Citation

Copyright © 2019 MSA University. All Rights Reserved.

Full Text link