Browsing by Author "Swilam, Noha"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Antidiabetic Activity and In Silico Molecular Docking of Polyphenols from Ammannia baccifera L. subsp. Aegyptiaca (Willd.) Koehne Waste: Structure Elucidation of Undescribed Acylated Flavonol Diglucoside(MDPI, 06/02/2022) Swilam, Noha; Nawwar, Mahmoud A. M; Radwan, Rasha A; Mostafa, Eman SChemical investigation of the aerial parts of Ammania aegyptiaca ethanol extract (AEEE) showed high concentrations of polyphenol and flavonoid content, with notable antioxidant activity. Undescribed acylated diglucoside flavonol myricetin 3-O-β- 4C1 -(600 -O-galloyl glucopyranoside) 7-O- β- 4C1 -glucopyranoside (MGGG) was isolated from the aerial parts of AEEE, along with four known polyphenols that had not been characterized previously from AEEE. The inhibitory effects of MGGG, AEEE, and all compounds against α-amylase, pancreatic lipase and β-glucosidase were assessed. In addition, molecular docking was used to determine the inhibition of digestive enzymes, and this confirmed that the MGGG interacted strongly with the active site residues of these enzymes, with the highest binding free energy against α-amylase (−8.99 kcal/mol), as compared to the commercial drug acarbose (−5.04 kcal/mol), thus justifying its use in the potential management of diabetes. In streptozotocin (STZ)-induced diabetic rats, AEEE significantly decreased high serum glucose, α-amylase activity and serum liver and kidney function markers, as well as increasing insulin blood level. Moreover, AEEE improved the lipid profile of diabetic animals, increased superoxide dismutase (SOD) activity, and inhibited lipid peroxidation. Histopathological studies proved the decrease in pancreas damage and supported the biochemical findings. These results provide evidence that AEEE and MGGG possess potent antidiabetic activity, which warrants additional investigation.Item Characterization of the bioactive constituents of Nymphaea alba rhizomes and evaluation of anti-biofilm as well as antioxidant and cytotoxic properties(Journal of Medicinal Plants Research, 2016) Omar Bakr, Riham; Wasfi, Reham; Swilam, Noha; Ezz Sallam, IbrahimAnti-biofilm represents an urge to face drug resistance. Nymphaea alba L. flowers and rhizomes have been traditionally used in Ayurvedic medicine for dyspepsia, enteritis, diarrhea and as an antiseptic. This study was designed to identify the main constituents of Nymphaea alba L. rhizomes and their antibiofilm activity. 70% aqueous ethanolic extract (AEE) of N. alba rhizomes was analyzed by liquid chromatography, high resolution, mass spectrometry (LC-HRMS) for its phytoconstituents in the positive and negative modes in addition to column chromatographic separation. Sixty-four phenolic compounds were identified for the first time in N. alba rhizomes. Hydrolysable tannins represent the majority with identification of galloyl hexoside derivative, hexahydroxydiphenic (HHDP) derivatives, glycosylated phenolic acids and glycosylated flavonoids. Five phenolics have been isolated and identified as gallic acid and its methyl and ethyl ester in addition to ellagic acid and pentagalloyl glucose. Minimum inhibitory concentrations (MIC) and anti-biofilm activity for the extract and the major isolated compounds were determined. Radical scavenging activity using 2.2Di (4-tert-octylphenyl)-1- picryl-hydrazyl (DPPH) assay as well as cytotoxic activity using 3-(4, 5-dimethyl thiazol-2-yl)-2, 5- diphenyl tetrazolium bromide (MTT) assay have also been evaluated. MIC of N. alba rhizomes against Staphylococcus aureus was 0.25 mg/mL compared with 0.1 mg/mL for methyl gallate. The best reduction in biofilm formation (84.9%) as well as the best radical scavenging (IC50 3 µg/mL) and cytotoxic (IC50 9.61 ± 0.3 µg/mL) activities were observed with methyl gallate. This is the first study for in-depth characterization of phenolic compounds in N. alba rhizomes revealing it as a valuable source of phenolic compounds and promising anti-biofilm forming agent of natural origin.Item A Unique Acylated Flavonol Glycoside from Prunus persica (L.) var. Florida Prince: A New Solid Lipid Nanoparticle Cosmeceutical Formulation for Skincare(MDPI, 03/12/2021) Mostafa, Eman S; Maher, Ahmed; Mostafa, Dalia A; Gad, Sameh S; Nawwar, Mahmoud A.M; Swilam, NohaMDPI Open Access Journals zoom_out_map search menu Journals Antioxidants Volume 10 Issue 3 10.3390/antiox10030436 antioxidants-logo Submit to this Journal Review for this Journal Edit a Special Issue ► Article Menu Open AccessArticle A Unique Acylated Flavonol Glycoside from Prunus persica (L.) var. Florida Prince: A New Solid Lipid Nanoparticle Cosmeceutical Formulation for Skincare by Eman S. Mostafa 1,*,Ahmed Maher 2,*OrcID,Dalia A. Mostafa 3OrcID,Sameh S. Gad 4OrcID,Mahmoud A.M. Nawwar 5 andNoha Swilam 6OrcID 1 Department of Pharmacognosy, Faculty of Pharmacy, October University of Modern Sciences and Arts (MSA), Giza 12451, Egypt 2 Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt 3 Department of Pharmaceutics, Faculty of Pharmacy, October University of Modern Sciences and Arts (MSA), Giza 12451, Egypt 4 Department of Pharmacology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt 5 National Research Centre, Department of Phytochemistry, Dokki, Cairo 12622, Egypt 6 Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt * Authors to whom correspondence should be addressed. Academic Editors: Alfredo Aires and Yong Chool Boo Antioxidants 2021, 10(3), 436; https://doi.org/10.3390/antiox10030436 Received: 24 February 2021 / Revised: 6 March 2021 / Accepted: 8 March 2021 / Published: 12 March 2021 (This article belongs to the Special Issue Phenolics as Antioxidant Agents) View Full-Text Download PDF Browse Figures Citation Export Abstract Polyphenols are known dietary antioxidants. They have recently attracted considerable interest in uses to prevent skin aging and hyperpigmentation resulting from solar UV-irradiation. Prunus persica (L.) leaves are considered by-products and were reported to have a remarkable antioxidant activity due to their high content of polyphenols. This study aimed at the development of a cosmeceutical anti-aging and skin whitening cream preparation using ethanol leaves extract of Prunus persica (L.) (PPEE) loaded in solid lipid nanoparticles (SLNs) to enhance the skin delivery. Chemical investigation of PPEE showed significantly high total phenolic and flavonoids content with notable antioxidant activities (DPPH, ABTS, and β-carotene assays). A unique acylated kaempferol glycoside with a rare structure, kaempferol 3-O-β-4C1-(6″-O-3,4-dihydroxyphenylacetyl glucopyranoside) (KDPAG) was isolated for the first time and its structure fully elucidated. It represents the first example of acylation with 3,4-dihydroxyphenyl acetic acid in flavonoid chemistry. The in-vitro cytotoxicity studies against a human keratinocytes cell line revealed the non-toxicity of PPEE and PPEE-SLNs. Moreover, PPEE, PPEE-SLNs, and KDPAG showed good anti-elastase activity, comparable to that of N-(Methoxysuccinyl)-Ala-Ala-Pro-Val-chloromethyl ketone. Besides, PPEE-SLNs and KDPAG showed significantly (p < 0.001) higher anti-collagenase and anti-tyrosinase activities in comparison to EDTA and kojic acid, respectively. Different PPEE-SLNs cream formulae (2% and 5%) were evaluated for possible anti-wrinkle activity against UV-induced photoaging in a mouse model using a wrinkle scoring method and were shown to offer a highly significant protective effect against UV, as evidenced by tissue biomarkers (SOD) and histopathological studies. Thus, the current study demonstrates that Prunus persica leaf by-products provide an interesting, valuable resource for natural cosmetic ingredients. This provides related data for further studying the potential safe use of PPEE-SLNs in topical anti-aging cosmetic formulations with enhanced skin permeation properties