Browsing by Author "Snowden, Martin J"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item The development of a novel smart material based on colloidal microgels and cotton(Elsevier Ltd, 5/23/2018) Majcen, Natasa; Mohsen, Reham; Snowden, Martin J; Mitchell, John C; Voncina, BojanaColloidal microgels are often described as “smart” due to their ability to undergo quite dramatic conformational changes in response to a change in their environmental conditions (e.g. temperature, pH). A range of novel smart materials were developed by the incorporation of colloidal microgels into cotton fabric. A series of microgels have been prepared by a surfactant free emulsion polymerisation based on N-isopropylacrylamide (NIPAM) monomer. Poly(NIPAM) is a thermosensitive polymer which undergoes a conformational transition close to the human skin temperature. Poly(NIPAM) was co- polymerized acrylic acid (AA), to prepare pH / temperature-sensitive microgels. Microgel particles were characterized by scanning electron microscopy (SEM), attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, and dynamic light scattering (DLS). This research aims at coupling microgel particles onto cotton fibers and comparing between different attachment techniques. The coupling reactions between microgels and cotton cellulose are only feasible if they both have appropriate functionalities. For microgels, this was achieved by using different initiators which introduce different functional groups on the particle surface and different surface charges. Cotton samples were successfully modified by carboxymethylation, periodate oxidation, grafting of 1,2,3,4-butanetetracarboxylic acid, and chloroacetylation in order to target possible reactions with the terminal functional groups of the microgel particles. Microgels were attached to the cotton fabrics using different methods and the bonds formed were determined by ATR-FTIR spectroscopy and SEM. The reaction yields were quantified gravimetrically and the maximum weight increase of cotton samples due to the attached microgels was around 24% (w/w).Item Functionalized Poly(N-isopropylacrylamide)-Based Microgels in Tumor Targeting and Drug Delivery(MDPI, 08/11/2021) Campora, Simona; Mohsen, Reham; Passaro, Daniel; Samir, Howida; Ashraf, Hesham; Al-Mofty, Saif El-Din; Diab, Ayman A; El-Sherbiny, Ibrahim M; Snowden, Martin J; Ghersi, GiulioAbstract: Over the past several decades, the development of engineered small particles as targeted and drug delivery systems (TDDS) has received great attention thanks to the possibility to over- come the limitations of classical cancer chemotherapy, including targeting incapability, nonspecific action and, consequently, systemic toxicity. Thus, this research aims at using a novel design of Poly(N-isopropylacrylamide) p(NIPAM)-based microgels to specifically target cancer cells and avoid the healthy ones, which is expected to decrease or eliminate the side effects of chemotherapeutic drugs. Smart NIPAM-based microgels were functionalized with acrylic acid and coupled to folic acid (FA), targeting the folate receptors overexpressed by cancer cells and to the chemotherapeutic drug doxorubicin (Dox). The successful conjugation of FA and Dox was demonstrated by dynamic light scattering (DLS), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), UV-VIS analysis, and differential scanning calorimetry (DSC). Furthermore, viability assay performed on cancer and healthy breast cells, suggested the microgels’ biocompatibility and the cytotoxic effect of the conjugated drug. On the other hand, the specific tumor targeting of synthetized microgels was demonstrated by a co-cultured (healthy and cancer cells) assay monitored using confocal microscopy and flow cytometry. Results suggest successful targeting of cancer cells and drug release. These data support the use of pNIPAM-based microgels as good candidates as TDDS.