Browsing by Author "Refaey, Rana H"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Insight on Some Newly Synthesized Trisubstituted Imidazolinones as VEGFR-2 Inhibitors(American Chemical Society, 2024-06) Mohamed, Manar R; Mahmoud, Walaa R; Refaey, Rana H; George, Riham F; Georgey, Hanan HTwo series of ten new 1,2,4-trisubstituted imidazolin-5-ones were synthesized and screened against MCF-7 breast cancer and A549 lung cancer cell lines to test their potential in vitro anticancer activity. The results revealed preferential activity of the tested compounds toward MCF-7 cell lines compared to A549 cell lines. The most promising ten compounds (3a, 3c, 3f, 3g, 3h, 3i, 3j, 6a, 6f, and 6i) were subjected to VEGFR-2 enzyme inhibitory activity testing to further explore their mechanism of action. The tested compounds showed remarkable enzyme inhibition in micromolar concentrations ranging from 0.07 to 0.36 μM, compared with Sorafenib and Sunitinib with IC50 values of 0.06 and 0.12 μM, respectively. The most promising candidate, 3j, was further evaluated for its cell cycle phases, apoptotic induction ability, as well as its antiproliferative activity and inhibitory potential for endothelial cell migration, analyzed by a cell scratch assay. Furthermore, in silico studies were also performed to identify and detect the stability of the binding poses.Item Insight on Some Newly Synthesized Trisubstituted Imidazolinones as VEGFR-2 Inhibitors(American Chemical Society, 2024-05) Mohamed, Manar R; Mahmoud, Walaa R; Refaey, Rana H; George, Riham F; Georgey, Hanan HTwo series of ten new 1,2,4-trisubstituted imidazolin-5-ones were synthesized and screened against MCF-7 breast cancer and A549 lung cancer cell lines to test their potential in vitro anticancer activity. The results revealed preferential activity of the tested compounds toward MCF-7 cell lines compared to A549 cell lines. The most promising ten compounds (3a, 3c, 3f, 3g, 3h, 3i, 3j, 6a, 6f, and 6i) were subjected to VEGFR-2 enzyme inhibitory activity testing to further explore their mechanism of action. The tested compounds showed remarkable enzyme inhibition in micromolar concentrations ranging from 0.07 to 0.36 μM, compared with Sorafenib and Sunitinib with IC50 values of 0.06 and 0.12 μM, respectively. The most promising candidate, 3j, was further evaluated for its cell cycle phases, apoptotic induction ability, as well as its antiproliferative activity and inhibitory potential for endothelial cell migration, analyzed by a cell scratch assay. Furthermore, in silico studies were also performed to identify and detect the stability of the binding poses.Item Investigations of new N1-substituted pyrazoles as anti-inflammatory and analgesic agents having COX inhibitory activity(Future Science, 2024-01) Said, Mona F; George, Riham F; Fayed, Walid; Soliman, Ahmed A F; Refaey, Rana HBackground: The search is ongoing for ideal anti-inflammatory and analgesic agents with promising potency and reasonable selectivity. Methods: New N1-substituted pyrazoles with or without an acetamide linkage were synthesized and evaluated for their anti-inflammatory and analgesic activities. COX inhibitory testing, molecular docking, molecular dynamics simulation and antiproliferative activity assessments were performed. Results: All compounds exhibited anti-inflammatory activity up to 90.40% inhibition. They also exhibited good analgesic activity with up to 100% protection. N1-benzensulfonamides 3d, 6c and 6h were preferentially selective agents toward COX-2. Compound 3d showed good cytotoxicity against MCF-7 and HTC116 cancer cell lines. Molecular modeling studies predicted the binding pattern of the most active compounds. Molecular dynamics confirmed the docking results. All compounds showed remarkable pharmacokinetic properties.Item Investigations of new N1-substituted pyrazoles as anti-inflammatory and analgesic agents having COX inhibitory activity(Future Science, 2024-01) Said, Mona F; George, Riham F; Fayed, Walid; Soliman, Ahmed A F; Refaey, Rana HBackground: The search is ongoing for ideal anti-inflammatory and analgesic agents with promising potency and reasonable selectivity. Methods: New N1-substituted pyrazoles with or without an acetamide linkage were synthesized and evaluated for their anti-inflammatory and analgesic activities. COX inhibitory testing, molecular docking, molecular dynamics simulation and antiproliferative activity assessments were performed. Results: All compounds exhibited anti-inflammatory activity up to 90.40% inhibition. They also exhibited good analgesic activity with up to 100% protection. N1-benzensulfonamides 3d, 6c and 6h were preferentially selective agents toward COX-2. Compound 3d showed good cytotoxicity against MCF-7 and HTC116 cancer cell lines. Molecular modeling studies predicted the binding pattern of the most active compounds. Molecular dynamics confirmed the docking results. All compounds showed remarkable pharmacokinetic properties.Item Lepidium meyenii (Maca) Roots: UPLC-HRMS, Molecular Docking, and Molecular Dynamics(American Chemical Society, 13/05/2022) Ibrahim, Rana M; Elmasry, Ghada F; Refaey, Rana H; El-Shiekh, Riham ALepidium meyenii or Maca is widely cultivated as a health care food supplement due to its nutritional and medicinal properties. Although there are a few in-depth studies evaluating Maca antihypertensive effects, the correlations between the chemical constituents and bioactivity of the plant have not been studied before. Thus, the roots were extracted using different solvents (aqueous, methanol, 50% methanol, and methylene chloride) and investigated for their antihypertensive and antioxidant activities through several in vitro assays. The methanolic extract exhibited the best renin and angiotensin converting enzyme (ACE) inhibitory activities with IC50 values of 24.79 ± 1.3 ng/mL and 22.02 ± 1.1 ng/mL, respectively, along with the highest antioxidant activity. In total, 120 metabolites from different classes, e.g., alkylamides, alkaloids, glucosinolates, organic acids, and hydantoin derivatives, were identified in the methanolic extract using ultrahigh-performance liquid chromatography/high-resolution mass spectrometry (UPLC/HRMS). Molecular docking simulations were used to investigate the potential binding modes and the intermolecular interactions of the identified compounds with ACE and renin active sites. Glucotropaeolin, β-carboline alkaloids, succinic acid, and 2,4-dihydroxy-3,5- cyclopentyl dienoic acid showed the highest affinity to target the ACE with high docking scores (S ranging from −35.32 to −22.51 kcal mol−1 ) compared to lisinopril (S = −36.64 kcal mol−1 ). Interestingly, macamides displayed the greatest binding affinity to the active site of renin with docking scores (S ranging from −22.47 to −28.25 kcal mol−1 ). Further, β-carbolines achieved docking scores comparable to that of the native ligand (S ranging from −13.50 to −20.06 kcal mol−1 ). Molecular dynamics simulations and MMPBSA were also carried out and confirmed the docking results. Additionally, the computational ADMET study predicted that the compounds attaining promising docking results had proper pharmacokinetics, drug-likeness characteristics, and safe toxicological profiles. Ultimately, our findings revealed that Maca roots could be considered a promising candidate as an antihypertensive drug.Item Pharmacophore based virtual screening for natural product database revealed possible inhibitors for SARS-COV-2 main protease(Elsevier, 2022-05) El-Ashrey, Mohamed K; Bakr, Riham O.; Fayed, Marwa A.A; Refaey, Rana H; Nissan, Yassin MThe challenge continues globally triggered by the absence of an approved antiviral drug against COVID-19 virus infection necessitating global concerted efforts of scientists. Nature still provides a renewable source for drugs used to solve many health problems. The aim of this work is to provide new candidates from natural origin to overcome COVID-19 pandemic. A virtual screening of the natural compounds database (47,645 compounds) using structure-based pharmacophore model and molecular docking simulations reported eight hits from natural origin against SARS-CoV-2 main proteinase (Mpro) enzyme. The successful candidates were of terpenoidal nature including taxusabietane, Isoadenolin A & C, Xerophilusin B, Excisanin H, Macrocalin B and ponicidin, phytoconstituents isolated from family Lamiaceae and sharing a common ent-kaurane nucleus, were found to be the most successful candidates. This study suggested that the diterpene nucleus has a clear positive contribution which can represent a new opportunity in the development of SARS-CoV-2 main protease inhibitors