Browsing by Author "Radwan, Rasha A"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Antidiabetic Activity and In Silico Molecular Docking of Polyphenols from Ammannia baccifera L. subsp. Aegyptiaca (Willd.) Koehne Waste: Structure Elucidation of Undescribed Acylated Flavonol Diglucoside(MDPI, 06/02/2022) Swilam, Noha; Nawwar, Mahmoud A. M; Radwan, Rasha A; Mostafa, Eman SChemical investigation of the aerial parts of Ammania aegyptiaca ethanol extract (AEEE) showed high concentrations of polyphenol and flavonoid content, with notable antioxidant activity. Undescribed acylated diglucoside flavonol myricetin 3-O-β- 4C1 -(600 -O-galloyl glucopyranoside) 7-O- β- 4C1 -glucopyranoside (MGGG) was isolated from the aerial parts of AEEE, along with four known polyphenols that had not been characterized previously from AEEE. The inhibitory effects of MGGG, AEEE, and all compounds against α-amylase, pancreatic lipase and β-glucosidase were assessed. In addition, molecular docking was used to determine the inhibition of digestive enzymes, and this confirmed that the MGGG interacted strongly with the active site residues of these enzymes, with the highest binding free energy against α-amylase (−8.99 kcal/mol), as compared to the commercial drug acarbose (−5.04 kcal/mol), thus justifying its use in the potential management of diabetes. In streptozotocin (STZ)-induced diabetic rats, AEEE significantly decreased high serum glucose, α-amylase activity and serum liver and kidney function markers, as well as increasing insulin blood level. Moreover, AEEE improved the lipid profile of diabetic animals, increased superoxide dismutase (SOD) activity, and inhibited lipid peroxidation. Histopathological studies proved the decrease in pancreas damage and supported the biochemical findings. These results provide evidence that AEEE and MGGG possess potent antidiabetic activity, which warrants additional investigation.Item Phenolics from Physalis peruviana fruits ameliorate streptozotocin-induced diabetes and diabetic nephropathy in rats via induction of autophagy and apoptosis regression(Elsevier, 08/09/2021) Ezzat, Shahira M; Abdallah, Heba M.I; Yassen, Noha N; Radwan, Rasha A; Mostafa, Eman S; Salama, Maha M; Salem, Mohamed AThe objective of our study was to evaluate the effect of Physalis peruviana L. fruits in the management of diabetes and diabetic nephropathy in relation to its metabolic profile. In-vitro α-amylase, β-glucosidase, and lipase inhibition activities were assessed for the ethanolic extract (EtOH) and its subfractions. Ethyl acetate (EtOAc) fraction showed the highest α-amylase, β-glucosidase, and lipase inhibition effect. In vivo antihyperglycemic testing of EtOAc in streptozotocin (STZ)-induced diabetic rats showed that it decreased the blood glucose level, prevented the reduction in body weight, improved serum indicators of kidney injury (urea, uric acid, creatinine), and function (albumin and total protein). EtOAc increased autophagic parameters (LC3B, AMPK) and depressed mTOR contents. Histopathology revealed that EtOAc ameliorated the pathological features and decreased the glycogen content induced by STZ. The immunohistochemical analysis showed that EtOAc reduced P53 expression as compared to the STZ-diabetic group. UPLC-ESI-MS/MS metabolite profiling of EtOAc allowed the identification of several phenolic compounds. Among the isolated compounds, gallic acid, its methylated dimer and the glycosides of quercetin had promising α-amylase and β-glucosidase inhibition activity. The results suggest that the phenolic-rich fraction has a protective effects against diabetic nephropathy presumably via enhancing autophagy (AMPK/mTOR pathway) and prevention of apoptosis (P53 suppression).