Browsing by Author "Osama, Dina"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Emergence of carbapenem resistant gram-negative pathogens with high rate of colistin resistance in Egypt: A cross sectional study to assess resistance trends during the COVID-19 pandemic(Academy of Scientific Research and Technology, 2024-03) Afify, Fatma A; Shata, Ahmed H; Aboelnaga, Nirmeen; Osama, Dina; Elsayed, Salma W; Saif, Nehal A; Mouftah, Shaimaa F; Shawky, Sherine M; Mohamed, Ahmed A; Loay, Omar; Elhadidy, MohamedThe current study investigated the temporal phenotypic and genotypic antimicrobial resistance (AMR) trends among multi‐drug resistant and carbapenem‐resistant Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa recovered from Egyptian clinical settings between 2020 and 2021. Bacterial identification and antimicrobial sensitivity of 111 clinical isolates against a panel of antibiotics were performed. Molecular screening for antibiotic resistance determinants along with integrons and associated gene cassettes was implemented. An alarming rate (98.2%) of these isolates were found to be phenotypically resistant to carbapenem. Although 23.9 % K. pneumoniae isolates were phenotypically resistant to colistin, no mobile colistin resistance (mcr) genes were detected. Among carbapenem‐resistant isolates, blaNDM and blaOXA‐48‐like were the most prevalent genetic determinants and were significantly overrepresented among K. pneumoniae. Furthermore, 84.78% of K. pneumoniae isolates co‐produced these two carbapenemase genes. The plasmid‐ mediated quinolone resistance genes (qnrS and qnrB) were detected among the bacterial species and were significantly more prevalent among K. pneumoniae. Moreover, Class 1 integron was detected in 82% of the bacterial isolates. This study alarmingly reveals elevated resistance to last‐resort antibiotics such as carbapenems as well as colistin which impose a considerable burden in the health care settings in Egypt. Our future work will implement high throughput sequencing‐based antimicrobial resistance surveillance analysis for characterization of novel AMR determinants. This information could be applied as a step forward to establish a robust antibiotic stewardship program in Egyptian clinical settings, thereby addressing the rising challenges of AMR.Item Molecular Characterization of Carbapenemase- Producing Klebsiella pneumoniae Isolated from Egyptian Pediatric Cancer Patients Including a Strain with a Rare Gene-Combination of β- Lactamases(Dove Medical Press Ltd, 2021) Osama, Dina; El-Mahallawy, Hadir; Tarek Mansour, Mohamed; Hashem, Abdelgawad; Attia, Ahmed SPurpose: Healthcare-associated infections caused by multi-drug-resistant (MDR) pathogens are a global threat. We aim to assess the clonal relatedness among carbapenemase-producing Klebsiella pneumoniae (CPKP) strains infecting Egyptian pediatric cancer patients. Materials and Methods: Identification and antimicrobial susceptibility testing of 149 Gram-negative isolates obtained from pediatric cancer patients were performed by VITEK 2. Genes encoding carbapenemases and extended-spectrum β-lactamases were detected by PCR and verified by DNA sequencing of representative samples. The transferability of the plasmids harboring blaOXA-48, from representative clinical samples, was evaluated by performing a conjugation experiment followed by PCR and MIC shift determination. Clonal relationships among the blaOXA-48-harboring K. pneumoniae isolates were determined by enterobacterial repetitive intergenic consensus (ERIC)-PCR and pulsed-field gel electrophoresis (PFGE). Results: Carbapenem resistance was observed in 59% of the isolates. The most prevalent species was K. pneumoniae (45.6%) and 57% of them were isolated from ICU. Fifty-nine % of the K. pneumoniae isolates were carbapenemase-producers and blaOXA-48 was detected in (58%) of them. One isolate co-harbored blaOXA-48, blaNDM-1, and blaIMP-1 genes for the first time in Egypt. PCR and meropenem MIC shift confirmed the success of the transferability of representative plasmids to E. coli K12. ERIC and PFGE identified 93% and 100% of the K. pneumoniae with a similarity coefficient ≥85%, respectively, including strains with indistinguishable patterns, suggesting possible clonal dissemination. Conclusion: Our findings underline the dissemination of diverse clones of MDR CPKP among Egyptian pediatric cancer patients. Hence, routine molecular characterizations followed by strict implementation of infection control measures are crucial to tackling this threat. © 2021 Osama et al.Item Unveiling the microevolution of antimicrobial resistance in selected Pseudomonas aeruginosa isolates from Egyptian healthcare settings: A genomic approach(Nature Publishing Group, 2024-07) Salem, Salma; Abd elsalam, Nehal Adel; Shata, Ahmed H; Mouftah, Shaimaa F; Cobo‑Díaz, José F; Osama, Dina; Atteya, Reham; Elhadidy, MohamedThe incidence of Pseudomonas aeruginosa infections in healthcare environments, particularly in lowand middle-income countries, is on the rise. The purpose of this study was to provide comprehensive genomic insights into thirteen P. aeruginosa isolates obtained from Egyptian healthcare settings. Phenotypic analysis of the antimicrobial resistance profle and bioflm formation were performed using minimum inhibitory concentration and microtiter plate assay, respectively. Whole genome sequencing was employed to identify sequence typing, resistome, virulome, and mobile genetic elements. Our fndings indicate that 92.3% of the isolates were classifed as extensively drug-resistant, with 53.85% of these demonstrating strong bioflm production capabilities. The predominant clone observed in the study was ST773, followed by ST235, both of which were associated with the O11 serotype. Core genome multi-locus sequence typing comparison of these clones with global isolates suggested their potential global expansion and adaptation. A signifcant portion of the isolates harbored Col plasmids and various MGEs, all of which were linked to antimicrobial resistance genes. Single nucleotide polymorphisms in diferent genes were associated with the development of antimicrobial resistance in these isolates. In conclusion, this pilot study underscores the prevalence of extensively drug-resistant P. aeruginosa isolates and emphasizes the role of horizontal gene transfer facilitated by a diverse array of mobile genetic elements within various clones. Furthermore, specifc insertion sequences and mutations were found to be associated with antibiotic resistance.