Repository logo
Communities & Collections
All of MSAR
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ismael, Osama"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    A New Hybrid KNN Classification Approach based on Particle Swarm Optimization
    (SCIENCE & INFORMATION SAI ORGANIZATION LTD, 19 BOLLING RD, BRADFORD, WEST YORKSHIRE, 00000, ENGLAND, 2020-11) Kadry, Reem; Ismael, Osama
    K-Nearest Neighbour algorithm is widely used as a classification technique due to its simplicity to be applied on different types of data. The presence of multidimensional and outliers data have a great effect on the accuracy of the K-Nearest Neighbour algorithm. In this paper, a new hybrid approach called Particle Optimized Scored K-Nearest Neighbour was proposed in order to improve the performance of K-Nearest Neighbour. The new approach is implemented in two phases; the first phase help to solve the multidimensional data by making feature selection using Particle Swarm Optimization algorithm, the second phase help to solve the presence of outliers by taking the result of the first phase and apply on it a new proposed scored K-Nearest Neighbour technique. This approach was applied on Soybean dataset, using 10 fold cross validation. The experiment results shows that the proposed approach achieves better results than the K-Nearest Neighbour algorithm and it's modified.

October University for Modern Sciences and Arts Established by Dr. Nawal El Degwi in 1996 copyright © 2019-2024

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback