Repository logo
Communities & Collections
All of MSAR
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Idrees, Hatim M. F."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Predicting the tensile properties of cotton/spandex core-spun yarns using artificial neural network and linear regression models
    (TAYLOR & FRANCIS LTD, 2014) Almetwally, Alsaid Ahmed; Idrees, Hatim M. F.; Hebeish, Ali Ali
    Recently, core-spun yarns showed many improved characteristics. The tensile properties of such yarns are accepted as one of the most important parameters for assessment of yarn quality. The tensile properties decide the performance of post-spinning operations; warping, weaving, and knitting, and the properties of the final textile product; hence, its accurate prediction carries much importance in industrial applications. In this study, artificial neural network (ANN) and multiple regression methods for modeling the tensile properties of cotton/spandex core-spun yarns are investigated. Yarn breaking strength, breaking elongation, and work of rupture of the core-spun yarns are studied. The two models were assessed by verifying root mean square error, mean bias error, and coefficient of determination (R-2-value). The results of this study revealed that ANN has better performance in predicting comparing with multiple linear regression.

October University for Modern Sciences and Arts Established by Dr. Nawal El Degwi in 1996 copyright © 2019-2024

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback