Browsing by Author "I. Fayed, A."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item AN INVESTIGATION OF NORMAL PERFORATION OF A SMALL CALIBER PROJECTILE INTO METAL/COMPOSITE LIGHTWEIGHT TARGETS(The Military Technical College, 2003) M. Riad, A.; I. Fayed, A.; A. Salah, S.In this paper, an experimental program has been conducted to study the normal perforation of a small caliber projectile into metal/composite targets. This program is concerned with the determination of ballistic resistance for a set of targets, consisting of kevlar/epoxy composite with different thicknesses faced by 1.6 mm-thick duralumin plates. The used textiles (kevlar129) for manufacturing the composites have a new weave shape (3D weaver"'), which permits the epoxy resin to diffuse through it. In addition, tensile tests of manufactured composite specimens are performed to determine their mechanical properties. An analytical model has been presented to describe the penetration process of metal/composite lightweight targets and to evaluate their ballistic resistance against small caliber projectiles. The present model consists of two parts; the first is based on energy balance principle for modeling the projectile penetration into a thin metallic plate failed by petalling [1], whereas the second uses the circumferential strain as a failure criterion for modeling the projectile penetration into a composite target [2]. The main equations representing analytical model are presented. These equations are arranged and compiled into a computer program. The input data to run the program are easily determined. Representative samples of the obtained results are presented with relevant analyses and discussions. The ballistic measurements of the experimental program are compared with the model predictions; good agreement is generally obtained. In addition, new target configurations are constructed and tested; these targets have the capability for defeating the projectile with the highest impact velocity used.Item PERFORATION OF A SMALL CALIBER PROJECTILE INTO TEXTILE/EPDXY COMPOSITE TARGETS(Military Technical College, 2003) I. Fayed, A.; M. Riad, A.; A. Salah, S.An experimental program has been conducted to study the normal perforation of a small caliber projectile into textile/epoxy composite targets. This program is concerned with the determination of ballistic resistance for a set of targets, consisting of kevlar/epoxy and S-2 glass/epoxy composites with different thicknesses. The used textiles (kevlar-129 and S-2 glass) for manufacturing the composites have a new weave shape (3D weaveTM), which permits the epoxy resin to diffuse through it. In addition, tensile tests of manufactured composite specimens are performed to determine their mechanical properties. The analytical model developed by Taylor and Vinson [1] is adopted herein to describe the penetration of a small caliber projectile into a textile/epoxy composite target. The selected model uses the circumferential strain as a failure criterion for a composite target. The main assumptions and equations representing the analytical model are presented. These equations are arranged and compiled into a computer program. The input data to run the program are easily determined. The ballistic measurements of the experimental program are compared with the model predictions; good agreement is generally obtained. The obtained results show that the tested composites with different thicknesses have a limited ballistic resistance against the used projectile. Moreover, other types of epoxies are recommended be used for manufacturing the composites and the effect of epoxy type as well as the delamination between composite layers on their ballistic resistance must be considered.