Browsing by Author "Hussein, Jihan"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Moringa oleifera leaves extract loaded gold nanoparticles offers a promising approach in protecting against experimental nephrotoxicity(Elsevier Inc, 2024-01) Hussein, Jihan; El-Bana, Mona; Abdel-Latif, Yasmin; El-Sayed, Samah; Shaarawy, Sahar; Medhat, DaliaCisplatin is one of the most important antitumor drugs, however; it has numerous adverse effects like nephrotoxicity which is considered one of cisplatin uses . The study was planned to evaluate the nephroprotective effect of M. oleifera leaves extract loaded gold nanoparticles (Au-NPs) against cisplatin-induced nephrotoxicity in rats. Initially, total phenolic contents (TPC) and the antioxidant activity of the M. oleifera leaves extract were evaluated and recorded 8.50 mg/g and 39.89 % respectively. After that, the dry leaves of M. oleifera were grinded into fine powder and extracted using water extraction system. Then, different volumes (0.5, 1 and 2 mL) of M. Oleifera were blended with constant volume of Au-NPs (1 mL). Both Au-NPs and M. oleifera extract loaded AuNPs were investigated using transmission electron microscope (TEM) that illustrated the deposition of M. Oleifera onto Au-NPs. The experimental study was performed on seventy male albino rats alienated into seven groups. Group I healthy rats, group II injected with one dose of cisplatin (CisPt), groups from III to VII treated groups received CisPt then received M. Oleifera leaves extract alone and /or Au-NPs with different ratios and concentrations. After the experiment’ time, serum urea and creatinine, kidney injury molecule-1 (KIM-1), advanced oxidation protein products (AOPP), monocyte chemoattractant protein-1 (MCP-1), tumor necrotic factor-α (TNF-α), and interleukin-6 (IL-6) were evaluated as markers of renal nephrotoxicity. The kidneys of rats were excised for malondialdehyde (MDA), nitric oxide (NO), and superoxide dismutase (SOD) assessments. Induction of CisPt showed a highly significant disturbance in oxidant/anti-oxidant balance and inducing inflammatory cascades supporting nephrotoxicity, while treatment with M. Oleifera leaves extract, Au-NPs, and the different concentrations of the extract loaded on Au-NPs had a crucial role in attenuating oxidative stress, enhancing antioxidant systems, and reducing inflammatory biomarkers, although the most significant results showed a powerful scavenging activity against nephrotoxicity induced by CisPt was obtained with M. Oleifera leaves extract loaded on Au-NPs with a concentration of 2:1 respectively.Item Preclinical activity of fluvastatin‐loaded self‐nanoemulsifying delivery system against breast cancer models: Emphasis on apoptosis(Wiely, 08/03/2022) Elimam, Hanan; Hussein, Jihan; Abdel‐Latif, Yasmin; Abdel‐Aziz, Amal Kamal; El‐Say, Khalid MStatins trigger apoptotic cell death in some types of growing tumor cells in a cholesterol‐lowering‐independent manner. Self‐nanoemulsifying delivery sys- tems (SNEDs) are potentially effective for the suppression of breast cancer development. This study aims to investigate the potential anticancer activity of fluvastatin (FLV)‐SNEDs in breast cancer while comparing it with FLV in vitro as well as in vivo exploiting/using MDA‐MB‐231 and Erhlich ascites carcinoma (EAC)‐bearing mice, respectively. Biochemical analysis of liver and kidney functions, oxidative stress markers, and histopathological examinations of such tumor tissues were performed showing the potentiality of SNEDs as a nanocarrier for antitumor agents. FLV‐SNEDs demonstrated more potent anticancer activity compared to FLV on MDA‐MB‐231 and hepatocellular carcinoma (HepG2) cells. In vivo experiments on the EAC‐ bearing mice model indicated that FLV and—to a greater extent—FLV‐SNEDs ameliorated EAC‐induced hepatotoxicity and nephrotoxicity. FLV or FLV‐ SNEDs evidently reduced the percent of Ki‐67 +ve EAC cells by 57.5% and 86.5% in comparison to the vehicle‐treated EAC group. In addition, FLV or FLV‐SNEDs decreased Bcl‐2 levels in serum and liver specimens. In contrast, FLV or FLV‐SNEDs significantly activated the executioner caspase‐3. Simultaneously, both FLV and FLV‐SNEDs stimulated p53 signaling and modulated Bcl‐2 protein levels in treated cells. Collectively, these results support the contribution of apoptotic cell death in mediating the anticancer activities of FLV and FLV‐SNEDs against murine EAC model in vivo. This study provides new understandings of how FLV and FLV‐SNEDs regulate EAC cell viability via upregulation of p53 signaling, and through modulation of cleaved caspase‐3 as well as antiapoptotic Bcl‐2 marker.Item Preclinical activity of fluvastatin‐loaded self‐nanoemulsifying delivery system against breast cancer models: Emphasis on apoptosis(Wiely, 08/03/2022) Elimam, Hanan; Hussein, Jihan; Abdel‐Latif, Yasmin; Abdel‐Aziz, Amal Kamal; El‐Say, Khalid MStatins trigger apoptotic cell death in some types of growing tumor cells in a cholesterol‐lowering‐independent manner. Self‐nanoemulsifying delivery sys- tems (SNEDs) are potentially effective for the suppression of breast cancer development. This study aims to investigate the potential anticancer activity of fluvastatin (FLV)‐SNEDs in breast cancer while comparing it with FLV in vitro as well as in vivo exploiting/using MDA‐MB‐231 and Erhlich ascites carcinoma (EAC)‐bearing mice, respectively. Biochemical analysis of liver and kidney functions, oxidative stress markers, and histopathological examinations of such tumor tissues were performed showing the potentiality of SNEDs as a nanocarrier for antitumor agents. FLV‐SNEDs demonstrated more potent anticancer activity compared to FLV on MDA‐MB‐231 and hepatocellular carcinoma (HepG2) cells. In vivo experiments on the EAC‐ bearing mice model indicated that FLV and—to a greater extent—FLV‐SNEDs ameliorated EAC‐induced hepatotoxicity and nephrotoxicity. FLV or FLV‐ SNEDs evidently reduced the percent of Ki‐67 +ve EAC cells by 57.5% and 86.5% in comparison to the vehicle‐treated EAC group. In addition, FLV or FLV‐SNEDs decreased Bcl‐2 levels in serum and liver specimens. In contrast, FLV or FLV‐SNEDs significantly activated the executioner caspase‐3. Simultaneously, both FLV and FLV‐SNEDs stimulated p53 signaling and modulated Bcl‐2 protein levels in treated cells. Collectively, these results support the contribution of apoptotic cell death in mediating the anticancer activities of FLV and FLV‐SNEDs against murine EAC model in vivo. This study provides new understandings of how FLV and FLV‐SNEDs regulate EAC cell viability via upregulation of p53 signaling, and through modulation of cleaved caspase‐3 as well as antiapoptotic Bcl‐2 marker.Item Processed Cheeses Fortified by Laurus nobilis L. Extract Nanoemulsion Ameliorate Hyperhomocysteinemia in Ehrlich Ascites Carcinoma Model(NIDOC (Nat.Inform.Document.Centre), 2023-02) Hussein, Jihan; El- Bana, Mona A; Abdel Latif, Yasmin; El-sayed, Samah M; Youssef, Ahmed M; El-Naggar, Mehrez E; Medhat, DaliaWe aimed to evaluate the protective effect of processed cheeses fortified by Laurus nobilis L. extract nanoemulsion against hyperhomocysteinemia in Ehrlich ascites carcinoma (EAC) model. Laurus nobilis L. extract nanoemulsion was prepared via spontaneous emulsification procedure. Then, nanoemulsion was added by different loadings to supplement processed cheeses. The morphology of Laurus nobilis L. extract nanoemulsion was detected using transmission electron microscopy (TEM). Female Swiss albino mice received processed cheese for two weeks then inoculated once with EAC cells. After the end of the experiment, blood samples were collected for determination of serum superoxide dismutase (SOD) , thiobarbituric acid reactive substances (TBARS), B-cell lymphoma 2 (Bcl-2), matrix metallopeptidase-9 (MMP-9), Tumor necrosis factor-α (TNF-α), and homocysteine (Hcy). Results revealed that the formation of Laurus nobilis L. extract nanoemulsion in spherical shape in size around 50 -120 nm. Mice inoculated with EAC cells showed significant increase in serum Hcy, TNF-α, TBARS, and MMP-9 levels while there was a significant decrease in SOD activity and Bcl-2 level. Pretreatment with different concentrations of Laurus nobilis L. extract significantly attenuated oxidative stress, inflammation, and induced apoptosis compared to EAC group.Item Prophylactic effect of probiotics fortified with Aloe vera pulp nanoemulsion against ethanol-induced gastric ulcer(Taylor and Francis Ltd., 08/11/2021) Hussein, Jihan; El-Bana, Mona A; El-Naggar, Mehrez E; Abdel-Latif, Yasmin; El-Sayed, Samah M; Medhat, DaliaThe purpose of this study was designed to evaluate the protective effect of probiotics fortified with Aloe vera pulp nanoemulsion on ethanol-induced gastric ulcer (GU). Freshly harvested Aloe vera pulp nanoemulsion was prepared and subsequently inoculated with 2% of the activated yogurt starter culture of Streptococcus thermophilus and Lactobacillus delbreukii subsp. bulgaricus (1:1). Chemical composition and physicochemical characterization of yogurt and the Aloe vera pulp nanoemulsion were assessed. GU was induced by ethanol. Rats were randomly assigned into control, GU, and four prophylactic groups including probiotics fortified with Aloe vera pulp nanoemulsion in the percentage of 0%, 10%, 20%, and 30% respectively. Serum levels of paraoxynase (POX) and tissue levels of malondialdehyde (MDA), nitric oxide (NO), and catalase (CAT) activity were assessed. Serum levels of nuclear factor kappa B (NF-κB), interleukin-1beta (IL-1β), matrix metalloproteinase-9 (MMP-9), ceramide, and homocysteine (Hcy) were evaluated. Results indicated that the Aloe vera pulp nanoemulsion was appeared in spherical nano form with droplets diameter around 330 nm. Ethanol induces GU to cause a significant increase in the levels of MDA, NO, NF-κB, IL-1β, MMP-9, Hcy, and ceramide along with a significant decrease in POX and CAT activities compared to the control group (p < 0.05). Pretreatment with different concentrations of probiotics fortified with Aloe vera pulp nanoemulsion with, especially the 30% concentration, significantly reduce the oxidative stress and ameliorate the release of different inflammatory mediators suggesting it as a promising approach in the protection against GU via scavenging superoxide radicals and inhibiting the activation of the inflammatory signaling cascades. © 2021 Informa UK Limited, trading as Taylor & Francis Group.Item Stimulatory effect of docosahexaenoic acid alone or loaded in zinc oxide or silver nanoparticles on the expression of glucose transport pathway(Elsevier, 5/25/2021) El-Daly, Sherien M; Medhat, Dalia; El Bana, Mona; Abdel-Latif, Yasmin; El-Naggar, Mehrez E; Omara, Enayat A; Morsy, Safaa M; Hussein, JihanThe role of glucose transporters (GLUTs) in diabetes mellitus has become more prominent as a possible therapeutic target. In the present study, we aimed to compare the effect of zinc oxide nanoparticles (ZnONPs), silver nanoparticles (AgNPs), and docosahexaenoic acid (DHA) alone or loaded in ZnONPs or AgNPs on insulin signaling pathway and GLUTs expression in diabetic rats. In the experimental part, rats were divided into seven groups; control, diabetic, and the other five groups were diabetic received different treatments. Fasting blood sugar (FBS), serum level of insulin, insulin resistance (IR), and serum level of phosphatidylinositol 3-kinase (PI3K) were evaluated. In addition, insulin expression in pancreatic islets was assessed by immunohistochemical analysis, and the expression of liver GLUTs 1, 2, and 4 and liver insulin receptor substrate-1 (IRS-1) was evaluated by real-time polymerase chain reactions (RT-PCR). The results of the current study showed that ZnONPs, AgNPs, and DHA alone or loaded in ZnONPs or AgNPs attenuated levels of FBS, insulin and decreased IR in diabetic rats through enhancing the expression of GLUTs as well as IRS-1 and PI3K. Furthermore, AgNPs loaded with DHA showed the most significance with high comparability to the control group. In conclusion, this study elucidated the role of GLUTs and IRS-1 in diabetes and introduced novel characteristics of ZnONPs, AgNPs, and DHA alone or loaded in ZnONPs or AgNPs as a therapeutic modality to activate GLUTs and IRS1, which may be beneficial for diabetic patients with IR. Abbreviations GLUTsGlucose transportersZnONPsZinc oxide nanoparticlesAgNPsSilver nanoparticlesDHADocosahexaenoic acidFBSFasting blood sugarIRInsulin resistancePI3KPhosphatidylinositol 3-kinaseIRS-1Insulin receptor substrate-1Akt1Phosphoinositide-dependent kinase-1PKCProtein kinase CFAsFatty acidsLCPUFALong-chain polyunsaturated fatty acidsEPAEicosapentaenoic acidNPsNanoparticlesAgNO3Silver nitrateZn(NO3)26H2OZinc nitrateSTZStreptozotocinCNCCellulose nanocrystalNaOHSodium hydroxide