Browsing by Author "Hayat Ullah"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Synthesis, biological and computational evaluation of benzoxazole hybrid analogs as potential anti-Alzheimer's agents(Taylor and Francis Ltd., 2024-09-13) Mohamed S Othman; Rafaqat Hussain; Fazal Rahim; Hayat Ullah; Shoaib Khan; Muhammad Taha; Mohamed A Fareid; Anas T Altaleb; Shimaa M Aboelnaga; Syed Adnan Ali ShahAim: Current study aims exploration of bis-benzoxazole bearing bis-Schiff base scaffolds (1–16) as anti-Alzheimer's agents. Materials & methods: 2-aminophenol is used as starting materials which react with different reagents in different step to give us bis-benzoxazole bearing bis-Schiff base analogs. NMR and HREI-MS techniques were used for characterization. All derivatives demonstrated varied range of activities with IC50 values 1.10 ± 0.40–24.50 ± 0.90 μM against acetylcholinesterase (AChE) and 1.90 ± 0.70–28.60 ± 0.60 μM against butyrylcholinesterase (BuChE) in contrast to donepezil. In both cases, analog-3 was found most potent. Molecular docking explored modes of interactions between scaffolds and receptor sites of targeted enzymes. Conclusion: This study offering promising approach for optimization and development of potent inhibitors of cholinesterase enzymes. © 2024 Informa UK Limited, trading as Taylor & Francis Group.Item Synthesis, structural characterization, in vitro biological evaluation and in silico molecular docking of some new 1,2,3-Benzotriazole-based Schiff base derivatives(Elsevier B.V, 2025-04-09) Shawkat Hayat; Mohamed S. Othman; Hayat Ullah; Amina Qureshi; Fazal Rahim; Sadiqa Begum; Mohsan Nawaz; Abdul Wadood; Amal H. Al-Bagawi; Ahmed M. Aref; Mohamed A. Fareid; Rashid Iqbal1,2,3-benzotriazole-based Schiff base derivatives were synthesized, characterized through different techniques such as 1 HNMR, 13CNMR, and HREI-MS, and screened against the alpha-glucosidase enzyme. All the synthesized analogues showed good inhibitory potentials with IC50 values ranging from 2.20 ± 0.30 μM to 24.40 ± 0.10 μM as compared to the standard drug acarbose (IC50 = 10.30 ± 0.20 μM). The most potent analogues among the series are 3 (IC50 = 4.30 ± 0.20 μM), 8 (IC50 = 9.40 ± 0.10), 9 (IC50 = 6.20 ± 0.40), 10 (IC50 = 6.60 ± 0.20), 11 (IC50 = 6.10 ± 0.30), 12 (IC50 = 4.70 ± 0.50 μM), 13 (IC50 = 2.20 ± 0.30 μM), 14 (IC50 = 4.30 ± 0.20 μM), and 16 (IC50 = 7.40 ± 0.20), which were found manyfold more active than the standard drug acarbose. A structureactivity relationship study was established that significantly depends on the position, nature, number, and electron-donating/withdrawing effect of the substituent(s) attached to the phenyl ring. We conducted molecular docking studies to investigate the binding interaction of the most potent analogues with the active site of an enzyme.