Browsing by Author "Galal, Omneya"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Beneficial effects of benfotiamine, a NADPH oxidase inhibitor, in isoproterenol-induced myocardial infarction in rats(Public Library of Science, 2020-05) Ahmed, Lamiaa A. ,; Hassan, Omnia F. ,; Galal, Omneya; Mansour, Dina F. ,; El-Khatib, AimanBackground Acute myocardial infarction (AMI) remains the most common cause of morbidity and mortality worldwide. The present study was directed to investigate the beneficial effects of benfotiamine pre- and post-treatments in isoproterenol (ISO)-induced MI in rats. Methods Myocardial heart damage was induced by subcutaneous injection of ISO (150 mg/kg) once daily for two consecutive days. Benfotiamine (100 mg/kg/day) was given orally for two weeks before or after ISO treatment. Results ISO administration revealed significant changes in electrocardiographic recordings, elevation of levels of cardiac enzymes; creatinine kinase (CK-MB) and troponin-I (cTn-I), and perturbation of markers of oxidative stress; nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and markers of inflammation; protein kinase C (PKC), nuclear factor-kappa B (NF-κB) and metalloproteinase-9 (MMP-9). The apoptotic markers (caspase-8 and p53) were also significantly elevated in ISO groups in addition to histological alterations. Groups treated with benfotiamine pre- and post-ISO administration showed significantly decreased cardiac enzymes levels and improved oxidative stress, inflammatory and apoptotic markers compared to the ISO groups. Conclusion The current study highlights the potential role of benfotiamine as a promising agent for prophylactic and therapeutic interventions in myocardial damage in several cardiovascular disorders via NADPH oxidase inhibition.Item Tropisetron modulates peripheral and central serotonin/insulin levels via insulin and nuclear factor kappa B/receptor for advanced glycation end products signalling to regulate type-2 diabetes in rats(The Royal Society of Chemistr, 2018) Ali Mohamed, Reem; Galal, Omneya; Refaat Mohammed, Ahmed; Salah El-Abhar, HananDespite its known central effect, 5% of serotonin is found centrally, while around 95% is found peripherally. Serotonin is stored and co-released with insulin upon pancreatic islets stimulation by glucose. This fact raises the curiosity regarding its possible role in diabetes. Hence, in this study, we assessed the possible modulatory effects of tropisetron, a 5-HT3 receptor antagonist, on type 2 diabetes mellitus models in rats. The rats were allocated into two groups: normal and diabetic. The latter group was treated with metformin (500 mg kg−1, p.o.), tropisetron (1 and 2 mg kg−1, i.p.), and a combination of metformin and tropisetron (1 mg kg−1). The different treatment regimens corrected glucose and lipid homeostasis manifested by the decrease in serum levels of glucose, fructosamine, homeostasis model of insulin resistance, triglycerides, total cholesterol, free fatty acid, as well as receptor for advanced glycation end products. Additionally, the treatments elevated levels of insulin, serotonin, and homeostasis model of β-cell function. On the molecular level, treatments corrected the altered insulin signaling cascade (phosphorylated insulin receptor substrate 1, phosphorylated protein kinase B, and glucose transporter 4), and inhibited β-catenin and phosphorylated nuclear factor kappa B p65 in the assessed soleus skeletal muscle. A similar pattern was duplicated in the hippocampus. This study provided evidence for the role of tropisetron on type 2 diabetes mellitus via modulating the insulin signaling cascade (insulin, phosphorylated insulin receptor substrate 1, phosphorylated protein kinase B, and glucose transporter 4), improving lipid/glucose profile, decreasing inflammatory markers (receptor for advanced glycation end products, and phosphorylated nuclear factor kappa B p65), as well as increasing 5-HT and reducing β-catenin.