Browsing by Author "Farroh, Khaled Yehia"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Antiviral activity of chitosan nanoparticles encapsulating curcumin against hepatitis C virus genotype 4a in human hepatoma cell lines(Dove Medical Press Ltd., 05/09/2020) Loutfy, Samah A; Elberry, Mostafa H; Farroh, Khaled Yehia; Mohamed, Hossam Taha; Mohamed, Aya A; Mohamed, ElChaimaa B; Faraag, Ahmed Hassan Ibrahim; Mousa, Shaker AView references (46) Purpose: Current direct-acting antiviral agents for treatment of hepatitis C virus genotype 4a (HCV-4a) have been reported to cause adverse effects, and therefore less toxic antivirals are needed. This study investigated the role of curcumin chitosan (CuCs) nanocomposite as a potential anti-HCV-4a agent in human hepatoma cells Huh7. Methods: Docking of curcumin and CuCs nanocomposite and binding energy calculations were carried out. Chitosan nanoparticles (CsNPs) and CuCs nanocomposite were prepared with an ionic gelation method and characterized with TEM, zeta size and potential, and HPLC to calculate encapsulation efficiency. Cytotoxicity studies were performed on Huh7 cells using MTT assay and confirmed with cellular and molecular assays. Anti-HCV-4a activity was determined using real-time PCR and Western blot. Results: The strength of binding interactions between protein ligand complexes gave scores with NS3 protease, NS5A polymerase, and NS5B polymerase of-124.91,-159.02, and-129.16, for curcumin respectively, and-68.51,-54.52, and-157.63 for CuCs nanocomposite, respec-tively. CuCs nanocomposite was prepared at sizes 29–39.5 nm and charges of 33 mV. HPLC detected 4% of curcumin encapsulated into CsNPs. IC50 was 8 µg/mL for curcumin and 25 µg/ mL for the nanocomposite on Huh7 but was 25.8 µg/mL and 34 µg/mL on WISH cells. CsNPs had no cytotoxic effect on tested cell lines. Apoptotic genes’ expression revealed the caspase-dependent pathway mechanism. CsNPs and CuCs nanocomposite demonstrated 100% inhibition of viral entry and replication, which was confirmed with HCV core protein expression. Conclusion: CuCs nanocomposite inhibited HCV-4a entry and replication compared to curcumin alone, suggesting its potential role as an effective therapeutic agent. © 2020 Loutfy et alItem Silica-coated graphene compared to Si-CdSe/ZnS quantum dots: toxicity, emission stability, and role of silica in the uptake process for imaging purposes(Elsevier, 2022-05) ElZorkany, Heba ElSayed; Farroh, Khaled Yehia; El-Shorbagy, Haidan M; Elshoky, Hisham A; Youssef, Tareq; Salaheldin, Taher A; Sabet, SalwaQuantum dots (QDs) present a special type of nanocrystals (NCs) due to their unique optical and chemical properties. While cadmium- based QDs (Cd-QDs) have the most favorable physicochemical properties, their toxicity, instability in the aqueous phase, and loss of brightness at high temperature are some of the obstacles that prevent the wide use of Cd-QDs. Carbon-based QDs as graphene quantum dots (GQDs) represent a very promising biocompatible replacement. In the present work, we mainly focus on comparing the efficiency and uptake of GQDs and Cd-QDs for fluorescent imaging purposes and studying the. effect of growing silica shell on the emission and the uptake of QDs inside living human and bacterial cells. Graphene and CdSe/ZnS QDs were prepared and encapsulated in silica to increase their emission and uptake by living cells. Moreover, we studied their photostability and cytotoxicity. The Prepared G-Si QDs showed good emission inside the cytoplasmic portion of the liver hepatocellular carcinoma cell line (HepG2) and Bacillus subtilis (B. subtilis), but they revealed lower photoluminescence (PL) intensity compared to Si-CdSe/ZnS NCs although G-Si QDs are advantageous in other aspects, i.e. possess lower toxicity and higher stability with temperature variations.